Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms

Abstract

Environmental light cycles are the dominant synchronizers of circadian rhythms in the field, and artificial light cycles and pulses are the major tools used in the laboratory to analyse properties of circadian systems1–4. It is therefore surprising that few studies have analysed the physical parameters of light stimuli that affect circadian rhythms. There have previously been no spectral sensitivity measurements for phase shifting the circadian rhythms of mammals and only two preliminary reports on the wavelength dependence of this response exist3,4. Using the magnitude of phase shift caused by a single 15-min pulse of monochromatic light given 6 h after activity onset, we have now characterized the spectral sensitivity of the photoreceptors responsible for phase shifting the locomotor rhythm of the hamster (Mesocricetus auratus). The sensitivity curve for this response has a maximum near 500 nm and is similar to the absorption spectrum for rhodopsin. Although the spectral sensitivity is consistent with a rhodopsin-based photopigment, two features of the photoreceptive system that mediates entrainment are unusual: the threshold of the response is high, especially for a predominantly rod retina like that of the hamster, and the reciprocal relationship between intensity and duration holds for extremely long durations (up to 45 min). These results suggest that the photoreceptive system mediating entrainment is markedly different from that involved in visual image formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pittendrigh, C. S. in Handbook of Behavioral Neurobiology Vol. 4 (ed. Aschoff, J.) 95–124 (Plenum, New York, 1981).

    Google Scholar 

  2. Takahashi, J. S. & Katz, M. Science 217, 1104–1111 (1982).

    Article  ADS  CAS  Google Scholar 

  3. McGuire, R. A., Rand, W. M. & Wurtman, R. J. Science 181, 956–957 (1973).

    Article  ADS  CAS  Google Scholar 

  4. Gordon, S. A. & Brown, G. A. Biochronometry (ed. Menaker, M.) 363–371 (National Academy of Sciences, Washington DC, 1971).

    Google Scholar 

  5. Menaker, M. in The Neurosciences: Third Study Program (eds Schmitt, F. O. & Worden, F. G.) 479–489 (MIT Press, Cambridge, Massachusetts, 1974).

    Google Scholar 

  6. Richter, C. P. Biological clocks in Medicine and Psychiatry (Thomas, Springfield, 1965).

    Google Scholar 

  7. Nelson, R. J. & Zucker, I. Comp. Biochem. Physiol. 69A, 145–148 (1981).

    Article  Google Scholar 

  8. Moore, R. Y. Front. Neuroendocr. 5, 185–206 (1978).

    ADS  CAS  Google Scholar 

  9. Rusak, B. & Zucker, I. Physiol. Rev. 59, 449–526 (1979).

    Article  CAS  Google Scholar 

  10. DeCoursey, P. J. J. cell. comp. Physiol. 63, 189–196 (1964).

    Article  CAS  Google Scholar 

  11. Daan, S. & Pittendrigh, C. S. J. comp. Physiol. 106, 253–266 (1976).

    Article  Google Scholar 

  12. Naka, K. I. & Rushton, W. A. H. J. Physiol., Lond. 185, 536–555 (1966).

    Article  CAS  Google Scholar 

  13. Bridges, C. D. B. Nature 184, 1727–1728 (1959).

    Article  ADS  Google Scholar 

  14. Granit, R. Acta physiol. scand. 2, 93–109 (1941).

    Article  Google Scholar 

  15. Wald, G., Brown, P. K. & Gibbons, I. R. J. opt. Soc. Am. 53, 20–35 (1963).

    Article  ADS  CAS  Google Scholar 

  16. Baylor, D. A., Lamb, T. D. & Yau, K. W. J. Physiol. Lond. 288, 589–611 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Baylor, D. A., Hodgkin, A. L. & Lamb, T. D. J. Physiol., Lond. 242, 685–727 (1974).

    Article  CAS  Google Scholar 

  18. Bunt, A. H. & Klock, I. B. Vision Res. 20, 739–747 (1980).

    Article  CAS  Google Scholar 

  19. Pickard, G. E. Brain Res. 183, 458–465 (1980).

    Article  CAS  Google Scholar 

  20. Groos, G. A. & Mason, R. J. comp. Physiol. 135, 349–356 (1980).

    Article  Google Scholar 

  21. Lewy, A. J., Wehr, T. A., Goodwin, F. K., Newsome, D. A. & Markey, S. P. Science 210, 1267–1269 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Baylor, D. A. & Hodgkin, A. L. J. Physiol., Lond. 234, 163–198 (1973).

    Article  CAS  Google Scholar 

  23. Wyszecki, G. & Stiles, W. S. Color Science, 584 (Wiley, New York, 1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, J., DeCoursey, P., Bauman, L. et al. Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature 308, 186–188 (1984). https://doi.org/10.1038/308186a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308186a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing