Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia

Abstract

Autosomal dominant hereditary spastic paraplegia (AD-HSP) is a genetically heterogeneous neurodegenerative disorder characterized by progressive spasticity of the lower limbs. Among the four loci causing AD-HSP identified so far, the SPG4 locus at chromosome 2p21–p22 has been shown to account for 40–50% of all AD-HSP families. Using a positional cloning strategy based on obtaining sequence of the entire SPG4 interval, we identified a candidate gene encoding a new member of the AAA protein family, which we named spastin. Sequence analysis of this gene in seven SPG4-linked pedigrees revealed several DNA modifications, including missense, nonsense and splice-site mutations. Both SPG4 and its mouse orthologue were shown to be expressed early and ubiquitously in fetal and adult tissues. The sequence homologies and putative subcellular localization of spastin suggest that this ATPase is involved in the assembly or function of nuclear protein complexes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physical map of the SPG4 interval and genomic organization of SPG4.
Figure 2: Spastin protein homologies.
Figure 3: CLUSTAL W alignment of the yeast metalloproteases Afg3p, Rca1p and Yme1p with human paraplegin and spastin.
Figure 4: PCR analysis of the expression of SPG4 and Spg4.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Reid, E. Pure hereditary spastic paraplegia. J. Med. Genet. 34, 499–503 (1997).

    Article  CAS  Google Scholar 

  2. Harding, A.E. Classification of the hereditary ataxias and paraplegias. Lancet 1, 1151–1155 (1983).

    Article  CAS  Google Scholar 

  3. Werderlin, L. Hereditary ataxias. Occurence and clinical features. Acta Neurol. Scand. 73 (suppl. 106), 124 (1986).

    Article  Google Scholar 

  4. Skre, H. Hereditary spastic paraplegia in western Norway. Clin. Genet. 6, 165–183 (1974).

    Article  CAS  Google Scholar 

  5. Hazan, J. et al. Autosomal dominant familial spastic paraplegia is genetically heterogeneous and one locus maps to chromosome 14q. Nature Genet. 5, 163–167 (1993).

    Article  CAS  Google Scholar 

  6. Hazan, J. et al. Linkage of a new locus for autosomal dominant familial spastic paraplegia to chromosome 2p. Hum. Mol. Genet. 3, 1569–1573 (1994).

    Article  CAS  Google Scholar 

  7. Hentati, A. et al. Linkage of a locus for autosomal dominant familial spastic paraplegia to chromosome 2p markers. Hum. Mol. Genet. 3, 1867–1871 (1994).

    Article  CAS  Google Scholar 

  8. Fink, J.K. et al. Autosomal dominant familial spastic paraplegia: tight linkage to chromosome 15q. Am. J. Hum. Genet. 56, 188–192 (1995).

    Article  CAS  Google Scholar 

  9. Hedera, P. et al. Novel locus for autosomal dominant hereditary spastic paraplegia, on chromosome 8q. Am. J. Hum. Genet. 64, 563–569 (1999).

    Article  CAS  Google Scholar 

  10. The Hereditary Spastic Paraplegia Working Group. Hereditary spastic paraplegia: advances in genetic research. Neurology 46, 1507–1514 (1996).

  11. Dürr, A. et al. Phenotype of autosomal dominant spastic paraplegia linked to chromosome 2. Brain 119, 1487–1496 (1996).

    Article  Google Scholar 

  12. Scott, W.K. et al. Locus heterogeneity, anticipation, and reduction of the chromosome 2p minimal candidate region in autosomal dominant familial spastic paraplegia. Neurogenetics 1, 95–102 (1997).

    Article  CAS  Google Scholar 

  13. Nielsen, J.E. et al. CAG repeat expansion in autosomal dominant pure spastic paraplegia linked to chromosome 2p21–24. Hum. Mol. Genet. 6, 1811–1816 (1997).

    Article  CAS  Google Scholar 

  14. Hazan, J. et al. A fine integrated map of the SPG4 locus excludes an expanded CAG repeat in chromosome 2p-linked autosomal dominant spastic paraplegia. Genomics (in press).

  15. Jouet, M. et al. X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result from mutations in the L1 gene. Nature Genet. 7, 402–407 (1994).

    Article  CAS  Google Scholar 

  16. Saugier-Veber, P. et al. X-linked spastic paraplegia and Pelizaeus-Merzbacher disease are allelic disorders at the proteolipid protein locus. Nature Genet. 6, 257–262 (1994).

    Article  CAS  Google Scholar 

  17. Confalonieri, F. & Duguet, M. A 200-amino acid ATPase module in search of a basic function. Bioessays 17, 639–650 (1995).

    Article  CAS  Google Scholar 

  18. Patel, S. & Latterich, M. The AAA team: related ATPases with diverse functions. Trends Cell Biol. 8, 65–71 (1998).

    Article  CAS  Google Scholar 

  19. Casari, G. et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93, 973–983 (1998).

    Article  CAS  Google Scholar 

  20. Heinzlef, O. et al. Mapping of a complicated familial spastic paraplegia to locus SPG4 on chromosome 2p. J. Med. Genet. 35, 89–93 (1998).

    Article  CAS  Google Scholar 

  21. Ichida, K. et al. Cloning of the cDNA encoding human xanthine dehydrogenase (oxidase): structural analysis of the protein and chromosomal location of the gene. Gene 133, 279–284 (1993).

    Article  CAS  Google Scholar 

  22. Andersson, S., Berman, D.M., Jenkins, E.P. & Russell, D.W. Deletion of steroid 5′-reductase 2 gene in male pseudohermaphroditism. Nature 354, 159–161 (1991).

    Article  CAS  Google Scholar 

  23. Kanzaki, T. et al. TGF-β 1 binding protein: a component of the large latent complex of TGF-β 1 with multiple repeat sequences. Cell 61, 1051–1061 (1990).

    Article  CAS  Google Scholar 

  24. Schnall, R. et al. Identification of a set of yeast genes coding for a novel family of putative ATPases with high similarity to constituents of the 26S protease complex. Yeast 10, 1141–1155 (1994).

    Article  CAS  Google Scholar 

  25. Perier, F. et al. Identification of a novel mammalian member of the NSF/CDC48p/Pas1p/TBP-1 family through heterologous expression in yeast. FEBS Lett. 351, 286–290 (1994).

    Article  CAS  Google Scholar 

  26. Solovyev, V.V., Salamov, A.A. & Lawrence, C.B. Predicting internal exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames. Nucleic Acids Res. 22, 5156–5163 (1994).

    Article  CAS  Google Scholar 

  27. Kulp, D., Haussler, D., Reese, M.G. & Eeckman, F.H. A generalized hidden Markov model for the recognition of human genes in DNA. in Proceedings of the Fourth International Conference on Intelligent Systems for Molecular Biology (ed. AAAI) 134–142 (MIT Press, St Louis, Missouri, 1996).

    Google Scholar 

  28. Xu, Y., Mural, R.J., Shah, M.B. & Uberbacher, E.C. Recognizing exons in genomic sequence using GRAIL II. in Genetic Engineering: Principles and Methods (ed. Setlow, J.) 241–253 (Plenum Press, New York, 1994).

    Google Scholar 

  29. Burge, C. & Karlin, S. Prediction of complete gene structure in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

    Article  CAS  Google Scholar 

  30. Kosak, M. Interpreting cDNA sequences: some insights from studies on translation. Mamm. Genome 7, 563–574 (1996).

    Article  Google Scholar 

  31. Prestridge, D.S. Predicting Pol II promoter sequences using transcription factor binding sites. J. Mol. Biol. 249, 923–932 (1995).

    Article  CAS  Google Scholar 

  32. Beyer, A. Sequence analysis of the AAA protein family. Protein Sci. 6, 2043–2058 (1997).

    Article  CAS  Google Scholar 

  33. Walker, J.E., Saraste, M.J., Runswick, J.J. & Gay, N.J. Distantly related sequences in the α- and β-subunits of ATPase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide-binding fold. EMBO J. 1, 945–951 (1982).

    Article  CAS  Google Scholar 

  34. Liberzon, A., Shpungin, S., Bangio, H., Yona, E. & Katcoff, D.J. Association of yeast SAP1, a novel member of the "AAA" ATPase family of proteins, with the chromatin protein SIN1. FEBS Lett. 388, 5–10 (1996).

    Article  CAS  Google Scholar 

  35. Uberbacher, E.C. & Mural, R.J. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc. Natl Acad. Sci. USA 88, 11261–11265 (1991).

    Article  CAS  Google Scholar 

  36. Swaffield, J.C. & Purugganan, M.D. The evolution of the conserved ATPase domain (CAD): reconstructing the history of an ancient protein module. J. Mol. Evol. 45, 549–563 (1997).

    Article  CAS  Google Scholar 

  37. Neuwald, A.F., Aravind, L., Spouge, J.L. & Koonin, E.V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).

    CAS  PubMed Central  Google Scholar 

  38. Hilt, W. & Wolf, D.H. Proteasomes of the yeast S. cerevisiae: genes, structure and functions. Mol. Biol. Reports 21, 3–10 (1995).

    Article  CAS  Google Scholar 

  39. Ozelius, L.J. et al. The early onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nature Genet. 17, 40–48 (1997).

    Article  CAS  Google Scholar 

  40. Wilkie, A.O.M. The molecular basis of genetic dominance. J. Med. Genet. 31, 89–98 (1994).

    Article  CAS  Google Scholar 

  41. Hardy, J. & Gwinn-Hardy, K. Genetic classification of primary neurodegenerative disease. Science 282, 1075–1078 (1998).

    Article  CAS  Google Scholar 

  42. Koutnikova, H. et al. Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nature Genet. 16, 345–357 (1997).

    Article  CAS  Google Scholar 

  43. Zhu, Z. et al. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nature Genet. 20, 337–343 (1998).

    Article  CAS  Google Scholar 

  44. Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M.E. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66 (1998).

    Article  CAS  Google Scholar 

  45. Klement, I.A. et al. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95, 41–53 (1998).

    Article  CAS  Google Scholar 

  46. Osoegawa, K. et al. An improved approach for construction of bacterial artificial chromosome libraries. Genomics 52, 1–8 (1998).

    Article  CAS  Google Scholar 

  47. Ewing, B., Hillier, L., Wendl, M.C. & Green, P. Base-calling of automated sequencer traces using Phred. Genome Res. 8, 175–185 (1998).

    Article  CAS  Google Scholar 

  48. Harris, N.L. Genotator: a workbench for sequence annotation. Genome Res. 7, 754–762 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank HSP family members and the Association Strümpell-Lorrain for participating in this study; C. Allaire for collecting family 4014; T. Maisonobe for performing the muscle biopsy; C. Caloustian, J.-P. Fiawoumo, F. Gary and D. Torchard for sequencing help; S. Cure for critical reading of the manuscript; and C. Fizames, S. Fauré, G. Gyapay, A. Lemainque, J.-L. Petit, M. Salanoubat, T. Bruls, M. Meugnier, W. Saurin, I. Richard and A. Bernot for discussions and support. The initial part of this work was funded by the Association Française contre les Myopathies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamilé Hazan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazan, J., Fonknechten, N., Mavel, D. et al. Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat Genet 23, 296–303 (1999). https://doi.org/10.1038/15472

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15472

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing