Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Receptive-field microstructure of blue-yellow ganglion cells in primate retina

Abstract

We examined the functional microcircuitry of cone inputs to blue-ON/yellow-OFF (BY) ganglion cells in the macaque retina using multielectrode recording. BY cells were identified by their ON responses to blue light and OFF responses to red or green light. Cone-isolating stimulation indicated that ON responses originated in short (S) wavelength-sensitive cones, whereas OFF responses originated in both long (L) and middle (M) wavelength-sensitive cones. Stimulation with fine spatial patterns revealed locations of individual S cones in BY cell receptive fields. Neighboring BY cells received common but unequal inputs from one or more S cones. Inputs from individual S cones differed in strength, indicating different synaptic weights, and summed approximately linearly to control BY cell firing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spike-triggered average stimulus intensity time course for nine simultaneously recorded macaque ganglion cells.
Figure 2: STA cone contrast time course for L, M and S cone-isolating stimuli in three BY ganglion cells from different preparations (a, b, c).
Figure 3: Receptive field of a BY cell, a nonopponent ON cell and a nonopponent OFF cell recorded simultaneously.
Figure 4: Strengths of individual cone inputs to two simultaneously recorded BY cells (a, b).
Figure 5: Locations of S-cone input to three groups of BY cells (a, b, c).
Figure 6: Firing rate as a function of S-cone stimulation (arbitrary units) for two simultaneously recorded BY cells (a, b).

Similar content being viewed by others

References

  1. Wiesel, T. & Hubel, D. H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29, 1115–1156 ( 1966).

    Article  CAS  Google Scholar 

  2. Dacey, D. M. & Lee, B. B. The 'blue–on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731–735 (1994).

    Article  CAS  Google Scholar 

  3. Mariani, A. P. Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive. Nature 308, 184–186 (1984).

    Article  CAS  Google Scholar 

  4. Kouyama, N. & Marshak, D. W. Bipolar cells specific for blue cones in the macaque retina. J. Neurosci. 12, 1233–1252 (1992).

    Article  CAS  Google Scholar 

  5. Wässle, H., Grunert, U., Martin, P. R. & Boycott, B. B. Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina. Vision Res. 34, 561–579 (1994).

    Article  Google Scholar 

  6. Calkins, D. J., Tsukamoto, Y. & Sterling, P. Microcircuitry and mosaic of a blue-yellow ganglion cell in the primate retina. J. Neurosci. 18, 3373–3385 (1998).

    Article  CAS  Google Scholar 

  7. Meister, M., Pine, J. & Baylor, D. A. Multi-neuronal signals from the retina: acquisition and analysis. J. Neurosci. Methods 51, 95–106 (1994).

    Article  CAS  Google Scholar 

  8. De Valois, R. L. Analysis and coding of color vision in the primate visual system. Cold Spring Harb. Symp. Quant. Biol. 30, 567– 579 (1965).

    Article  CAS  Google Scholar 

  9. Dacey, D. M. & Petersen, M. R. Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proc. Natl. Acad. Sci. USA 89, 9666–9670 (1992).

    Article  CAS  Google Scholar 

  10. Estevez, O. & Spekreijse, H. The silent substitution method in visual research. Vision Res. 22, 681– 691 (1982).

    Article  CAS  Google Scholar 

  11. De Monasterio, F. M., Gouras, P. & Tolhurst, D. J. Trichromatic colour opponency in ganglion cells of the rhesus monkey retina. J. Physiol. (Lond.) 251, 197–216 (1975).

    Article  CAS  Google Scholar 

  12. Smith, V. C., Lee, B. B., Pokorny, J., Martin, P. R. & Valberg, A. Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights. J. Physiol. (Lond.) 458, 191–221 ( 1992).

    Article  CAS  Google Scholar 

  13. Yeh, T., Lee, B. B. & Kremers, J. Temporal response of ganglion cells of the macaque retina to cone-specific modulation. J. Opt. Soc. Am. A 12, 456–464 (1995).

    Article  CAS  Google Scholar 

  14. Brindley, G. S., du Croz, J. J. & Rushton, W. A. The flicker fusion frequency of the blue-sensitive mechanism of colour vision. J. Physiol. (Lond.) 183 , 497–500 (1966).

    Article  CAS  Google Scholar 

  15. Wisowaty, J. J. & Boynton, R. M. Temporal modulation sensitivity of the blue mechanism: measurements made without chromatic adaptation. Vision Res. 20, 895–909 (1980).

    Article  CAS  Google Scholar 

  16. Schnapf, J. L., Nunn, B. J., Meister, M. & Baylor, D. A. Visual transduction in cones of the monkey macaca fascicularis. J. Physiol. (Lond.) 427, 681–713 ( 1990).

    Article  CAS  Google Scholar 

  17. Stockman, A., MacLeod, D. I. & DePriest, D. D. The temporal properties of the human short-wave photoreceptors and their associated pathways. Vision Res. 31, 189–208 (1991).

    Article  CAS  Google Scholar 

  18. Stockman, A., MacLeod, D. I. & Lebrun, S. J. Faster than the eye can see: blue cones respond to rapid flicker. J. Opt. Soc. Am. A 10, 1396 –1402 (1993).

    Article  CAS  Google Scholar 

  19. Curcio, C. A. et al. Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J. Comp. Neurol. 312, 610–624 (1991).

    Article  CAS  Google Scholar 

  20. Kuffler, S. W. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–68 (1953).

    Article  CAS  Google Scholar 

  21. Wandell, B. A. Foundations of Vision (Sinauer, Sunderland, Massachusetts, 1995).

    Google Scholar 

  22. Williams, D. R., MacLeod, D. I. & Hayhoe, M. M. Punctate sensitivity of the blue-sensitive mechanism. Vision Res. 21, 1357–1375 (1981).

    Article  CAS  Google Scholar 

  23. Kier, C. K., Buchsbaum, G. & Sterling, P. How retinal microcircuits scale for ganglion cells of different size. J. Neurosci. 15, 7673– 7683 (1995).

    Article  CAS  Google Scholar 

  24. Enroth-Cugell, C. & Pinto, L. H. Algebraic summation of centre and surround inputs to retinal ganglion cells of the cat. Nature 226, 458–459 ( 1970).

    Article  CAS  Google Scholar 

  25. Freed, M. A., Smith, R. G. & Sterling, P. Computational model of the on-alpha ganglion cell receptive field based on bipolar cell circuitry. Proc. Natl. Acad. Sci. USA 89, 236–240 ( 1992).

    Article  CAS  Google Scholar 

  26. Sterling, P. in The Synaptic Organization of the Brain 4th edn. (ed. Shepherd, G.) 205–253 (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  27. Schnapf, J. L., Kraft, T. W., Nunn, B. J. & Baylor, D. A. Spectral sensitivity of primate photoreceptors. Vis. Neurosci. 1, 255–261 ( 1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Dacey for providing technical advice and B. Hausen, J. Gutierrez and the Stanford University Cardiovascular Surgery Department for providing access to tissue from donor animals. We thank F. Rieke and B. Wandell for comments on the manuscript and R. Schneeveis for technical assistance. This work was supported by NIH grant EYO5750 (D.A.B.) and Helen Hay Whitney Foundation postdoctoral fellowship (E.J.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Chichilnisky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chichilnisky, E., Baylor, D. Receptive-field microstructure of blue-yellow ganglion cells in primate retina. Nat Neurosci 2, 889–893 (1999). https://doi.org/10.1038/13189

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing