Skip to main content
Log in

STOP (stable-tubule-only-polypeptide) is preferentially associated with the stable domain of axonal microtubules

  • Published:
Journal of Neurocytology

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Axonal microtubules consist of two distinct domains that differ in tyrosinated-tubulin staining. One domain stains weakly for tyrosinated-tubulin, while the other stains strongly, and the transition between these domains is abrupt; the tyrosinated-tubulin-poor domain is at the minus end of the microtubule, and the tyrosinated-tubulin-rich domain extends from the plus end of the tyrosinated-tubulin-poor domain to the end of the microtubule. The tyrosinated-tubulin-poor domain is drug- and cold-stable, whereas the tyrosinated-tubulin-rich domain is drug-labile, but largely cold-stable. STOP (stable-tubule-only-polypeptide) has potent microtubule stabilizing activity, and may contribute to the cold and drug stability of axonal microtubules. To evaluate this possibility, we examined STOP association with the different types of microtubule polymer in cultured sympathetic neurons. By immunofluorescence, STOP is present in the cell body and throughout the axon; axonal staining declines progressively in the distal portion of the axon, and reaches lowest levels in the growth cone. Growth cone microtubules, which are drug and cold labile, do not stain detectably for STOP. To examine individual axonal microtubules for STOP, we used a procedure that causes microtubules to splay out from the main axonal array so that they can be visualized for relatively long distances along their length. Both tyrosinated-tubulin-rich and tyrosinated-tubulin-poor polymer stain for STOP, but STOP is several-fold more concentrated on tyrosinated-tubulin-poor polymer than on tyrosinated-tubulin-rich polymer. These results are consistent with STOP dependent stabilization of axonal microtubules, with the difference between cold-stable polymer versus cold- + drug-stable polymer determined by the amount of STOP on the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AHMAD, F. J., PIENKOWSKI, T. P. & BAAS, P. W. (1993) Regional differences in microtubule dynamics in the axon. Journal of Neuroscience 13, 856–866.

    Google Scholar 

  • ANDRIEUX, A., SALIN, P. A., VERNET, M., KUJALA, P., BARATIER, J., GORY-FAURE, S., BOSC, C., POINTU, H., PROIETTO, D., SCHWEITZER, A.

  • DENARIER, E., KLUMPERMAN, J. & JOB, D. (2002) The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders. Genes and Development 16, 2350–2364.

    Google Scholar 

  • BAAS, P. W. & AHMAD, F. J. (1992) The plus ends of stable microtubules are the exclusive nucleating structures for microtubules in the axon. Journal of Cell Biology 116, 1231–1241.

    Google Scholar 

  • BAAS, P. W., AHMAD, F. J., PIENKOWSKI, T. P., BROWN, A. & BLACK, M. M. (1992) Sites of microtubule stabilization for the axon. Journal of Neuroscience 13, 2177–2185.

    Google Scholar 

  • BAAS, P. W. & BLACK, M. M. (1990) Individual microtubules of the axon consist of distinct domains that differ in stability and composition. Journal of Cell Biology 111, 494–509.

    Google Scholar 

  • BAAS, P. W. & HEIDEMANN, S. R. (1986) Microtubule reassembly from nucleating fragments during the regrowth of amputated neurites. Journal of Cell Biology 103, 917–927.

    Google Scholar 

  • BAAS, P. W., PIENKOWSKI, T. P., CIMBALNIK, K. A., TOYAMA, K., BAKALIS, S., AHMAD, F. J. & KOSIK, K. S. (1994) Tau confers drug stability but not cold stability to microtubules in living cells. Journal of Cell Science 107, 135–143.

    Google Scholar 

  • BAAS, P. W., SLAUGHTER, T., BROWN, A. & BLACK, M. M. (1991) Microtubule dynamics in axons and dendrites. Journal of Neuroscience Research 30, 134–153.

    Google Scholar 

  • BLACK, M. M. & GREENE, L. A. (1982) Changes in the colchicine susceptibility of microtubules associated with neurite outgrowth: Studies with nerve growth factor responsive PC12 pheochromocytoma cells. Journal of Cell Biology 95, 379–386.

    Google Scholar 

  • BLACK, M. M. & KURDYLA, J. T. (1983) Microtubuleassociated proteins of neurons. Journal of Cell Biology 97, 1020–1028.

    Google Scholar 

  • BLACK, M. M., SLAUGHTER, T. & FISCHER, I. (1994) Microtubule-associated protein 1b (MAP1b) is concentrated in the distal region of growing axons. Journal of Neuroscience 14, 857–870.

    Google Scholar 

  • BLACK, M. M., SLAUGHTER, T., MOSHIACH, S., OBROCKA, M. & FISCHER, I. (1996) Tau is enriched on dynamic microtubules in the distal region of growing axons. Journal of Neuroscience 16, 3601–3619.

    Google Scholar 

  • BLOSE, S. H., MELTZER, D. I. & FERAMISCO, J. R. (1984). 10-nm filaments are induced to collapse in living cells microinjected with monoclonal and polyclonal antibodies against tubulin. Journal of Cell Biology 98, 847–858.

    Google Scholar 

  • BOSC, C., FRANK, R., DENARIER, E., RONJAT, M., SCHWEITZER, A., WEHLAND, J. & JOB, D. (2001) Identification of novel bifunctional calmodulin-binding and microtubule-stabilizing motifs in STOP proteins. Journal of Biological Chemistry 276, 30904–30913.

    Google Scholar 

  • BOSC, C., CRONK, J. D., PIROLLET, F., WATTERSON, D. M., HAIECH, J., JOB, D. & MARGOLIS, R. L. (1996) Cloning, expression, and properties of the microtubule-stabilizing protein STOP. Proceedings of the National Academy of Sciences USA 93, 2125–2130.

    Google Scholar 

  • BROWN, A., SLAUGHTER, T. & BLACK, M. M. (1992) Newly assembled microtubules are concentrated in the proximal and distal regions of growing axons. Journal of Cell Biol 119, 867–882.

    Google Scholar 

  • BROWN, A., LI, Y., SLAUGHTER, T. & BLACK, M. M. (1993) Composite microtubules of the axon: Quantitative analyses of tyrosinatedandacetylated tubulin along individual microtubules. Journal of Cell Science 104, 339–352.

    Google Scholar 

  • CASSIMERIS, L. (2002) The oncoprotein 18/stathmin family of microtubule destabilizers. Current Opinion in Cell Biology 14, 18–24.

    Google Scholar 

  • CASSIMERIS, L. & SPITTLE, C. (2001) Regulation of microtubule-associated proteins. International Review of Cytology 210, 163–226.

    Google Scholar 

  • DENARIER, E., FOUREST-LIEUVIN, A., BOSC, C., PIROLLET, F., CHAPEL, A., MARGOLIS, R. L. & JOB, D. (1998) Nonneuronal isoforms of STOP protein are responsible for microtubule cold stability in mammalian fibroblasts. Proceedings of the National Academy of Sciences USA 95, 6055–6060.

    Google Scholar 

  • DESAI, A., VERMA, S., MITCHISON, T. J. & WALCZAK, C. E. (1999) Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78.

    Google Scholar 

  • DITELLA, M. C., FEIGUIN, F., CARRI, N., KOSIK, K. S. & CACERES, A. (1996) MAP-1B/TAU functional redundancy during laminin-enhanced axonal growth. Journal of Cell Science 109, 467–477.

    Google Scholar 

  • DiTELLA, M., FEIGUIN, F., MORFINI, G. & CACERES, A. (1994) Microfilament-associated growth cone component depends upon Tau for its intracellular localization. Cell Motility and the Cytoskeleton 29, 117–130.

    Google Scholar 

  • FERREIRA, A., BUSCIGLIO, J. & CACERES, A. (1989) Microtubule formation and neurite growth in cerebellar macroneurons which develop in vitro: Evidence for the involvement of microtubule associate proteins MAP1a, HMW-MAP2, and tau. Developmental Brain Research 49, 215–228.

    Google Scholar 

  • FRANCIS, F., KOULAKOFF, A., BOUCHER, D., CHAFEY, P., SCHAAR, B., VINET, M. C., FRIOCOURT, G., McDONNELL, N., REINER, O., KAHN, A., McCONNELL, S. K., BERWALDNETTER, Y., DENOULET, P. & CHELLY, J. (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23, 247–256.

    Google Scholar 

  • GLEESON, J. G., LIN, P. T., FLANAGAN, L. A. & WALSH, C. A. (1999) Doublecortin is a microtubuleassociated protein and is expressed widely by migrating neurons. Neuron 23, 257–721.

    Google Scholar 

  • GONZALEZ-BILLAULT, C., AVILA, J. & CACERES, A. (2001) Evidence for the role of MAP1B in axon formation. Molecular Biology of the Cell 12, 2087–2098.

    Google Scholar 

  • GOOLD, R. G., OWEN, R. & GORDON-WEEKS, P. R. (1999) Glycogen synthase kinase 3beta phosphorylation of microtubule-associated protein 1B regulates the stability of microtubules in growth cones. Journal of Cell Science 112, 3373–3384.

    Google Scholar 

  • GUILLAUD, L., BOSC, C., FOUREST-LIEUVIN, A., DENARIER, E., PIROLLET, F., LAFANECHERE, L. & JOB, D. (1998) STOP proteins are responsible for the high degree of microtubule stabilization observed in neuronal cells. Journal of Cell Biology 142, 167– 179.

    Google Scholar 

  • HORESH, D., SAPIR, T., FRANCIS, F., WOLF, S. G., CASPI, M., ELBAUM, M., CHELLY, J. & REINER, O. (1999) Doublecortin, a stabilizer of microtubules. Human Molecular Genetics 8, 1599–1610.

    Google Scholar 

  • KREIS, T. (1987) Microtubules containing detyrosinated tubulin are less dynamic. EMBO Journal 6, 2597–2606.

    Google Scholar 

  • LEE, G. & ROOK, S. L. (1992) Expression of tau protein in nonneuronal cells: Microtubule binding and stabilization. Journal of Cell Science 102, 227–237.

    Google Scholar 

  • LI, Y. & BLACK, M. M. (1996) Microtubule assembly and turnover in growing axons. Journal of Neuroscience 16, 531–544.

    Google Scholar 

  • LIN, P. T., GLEESON, J. G., CORBO, J. C., FLANAGAN, L. & WALSH, C. A. (2000) DCAMKL1 encodes a protein kinase with homology to doublecortin that regulates microtubule polymerization. Journal of Neuroscience 20, 9152–9161.

    Google Scholar 

  • MANDELL, J. W. & BANKER, G. A. (1996) A spatial gradient of tau protein phosphorylation in nascent axons. Journal of Neuroscience 16, 5727–5740.

    Google Scholar 

  • MARGOLIS, R. L., RAUCH, C. T. & JOB, D. (1986) Purification and assay of cold-stable microtubules and STOP protein. Methods in Enzymology 134, 160–170.

    Google Scholar 

  • MORI, N. & MORII, H. (2002) SCG10-related neuronal growth-associated proteins in neural development, plasticity, degeneration, and aging. Journal of Neuroscience Research 70, 264–273.

    Google Scholar 

  • PABION, M., JOB, D. & MARGOLIS, R. L. (1984) Sliding of STOP proteins on microtubules. Biochemistry 18, 6642–6648.

    Google Scholar 

  • PRYER, N. K., WALKER, R. A., SKEEN, V. P., BOURNS, B. D., SOBOEIRO, M. F. & SALMON, E. D. (1992) Brain microtubule-associated proteins modulate microtubule dynamic instability in vitro. Real-time observations using video microscopy. Journal of Cell Science 103, 965–976.

    Google Scholar 

  • SAPIR, T., ELBAUM, M. & REINER, O. (1997) Reduction of microtubule catastrophe events by LIS1, plateletactivating factor acetylhydrolase subunit. EMBO Journal 16, 6977–6984.

    Google Scholar 

  • SCHULZE, E., ASAI, D. J., BULINSKI, J. C. & KIRSCHNER, M. (1987). Post-translational modification and microtubule stability. Journal of Cell Biology 105, 2167–2177.

    Google Scholar 

  • STEPANOVA, T., SLEMMER, J., HOOGENRAAD, C. C., LANSBERGEN, G., DORTLAND, B., DE ZEEUW, C. I., GROSVELD, F., VAN CAPPELLEN, G., AKHMANOVA, A. & GALJART, N. (2003) Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein). Journal of Neuroscience 23, 2655–2664.

    Google Scholar 

  • TAKEMURA, R., OKABE, S., UMEYAMA, T., KANAI, Y., COWAN, N. J. & HIROKAWA, N. (1992) Increased microtubule stability and alpha tubulin acetylation in cells transfected with microtubule-associated proteins MAP1B, MAP2 or tau. Journal of Cell Science 103, 953–964.

    Google Scholar 

  • TINT, I., SLAUGHTER, T., FISCHER, I. & BLACK, M. M. (1998) Acute inactivation of tau has no effect on dynamics of microtubules in growing axons of cultured sympathetic neurons. Journal of Neuroscience 18, 8660– 8673.

    Google Scholar 

  • TRINCZEK, B., BIERNAT, J., BAUMANN, K., MANDELKOW, E.-M. & MANDELKOW, E. (1995) Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules. Molecular Biology of the Cell 6, 1887–1902.

    Google Scholar 

  • WEBB, B. C. & WILSONM L. (1980) Cold-stable microtubules from brain. Biochemistry 19, 1993–2001.

    Google Scholar 

  • WEBSTER, D. R., GUNDERSEN, G. G., BULINSKI, J. C. & BORISY, G. G. (1987) Differential turnover of tyrosinated and detyrosinated microtubules. Proceedings of the National Academy of Sciences USA 84, 9040–9044.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Black.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slaughter, T., Black, M.M. STOP (stable-tubule-only-polypeptide) is preferentially associated with the stable domain of axonal microtubules. J Neurocytol 32, 399–413 (2003). https://doi.org/10.1023/B:NEUR.0000011334.70648.87

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEUR.0000011334.70648.87

Keywords

Navigation