Skip to main content
Log in

Expression of the mitotic kinesin Kif15 in postmitotic neurons: Implications for neuronal migration and development

  • Published:
Journal of Neurocytology

Abstract

Kif15 is a kinesin-related protein whose mitotic homologues are believed to crosslink and immobilize spindle microtubules. We have obtained rodent sequences of Kif15, and have studied their expression and distribution in the developing nervous system. Kif15 is indeed expressed in actively dividing fibroblasts, but is also expressed in terminally postmitotic neurons. In mitotic cells, Kif15 localizes to spindle poles and microtubules during prometaphase to early anaphase, but then to the actin-based cleavage furrow during cytokinesis. In interphase fibroblasts, Kif15 localizes to actin bundles but not to microtubules. In cultured neurons, Kif15 localizes to microtubules but shows no apparent co-localization with actin. Localization of Kif15 to microtubules is particularly good when the microtubules are bundled, and there is a notable enrichment of Kif15 in the microtubule bundles that occupy stalled growth cones and dendrites. Studies on developing rodent brain show a pronounced enrichment of Kif15 in migratory neurons compared to other neurons. Notably, migratory neurons have a cage-like configuration of microtubules around their nucleus that is linked to the microtubule array within the leading process, such that the entire array moves in unison as the cell migrates. Since the capacity of microtubules to move independently of one another is restricted in all of these cases, we propose that Kif15 opposes the capacity of other motors to generate independent microtubule movements within key regions of developing neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AHMAD, F. J., ECHEVERRI, C. J., VALLEE, R. B. & BAAS, P. W. (1998) Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon. Journal of Cell Biology 140, 246–256.

    Google Scholar 

  • AHMAD, F. J., HUGHEY, J., WITTMANN, T., HYMAN, A., GREASER, M. & BAAS, P. W. (2000) Motor proteins regulate force interactions between microtubules and microfilaments in the axon. Nature Cell Biology 2, 276–280.

    Google Scholar 

  • AHMAD, F. J., YU, W., MCNALLY, F. J. & BAAS, P. W. (1999) An essential role for katanin in severing microtubules in the neuron. Journal of Cell Biology 145, 305–315.

    Google Scholar 

  • BAAS, P. W. (1999) Microtubules and neuronal polarity: Lessons from mitosis. Neuron 22, 23–31.

    Google Scholar 

  • BOLETI, H., KARSENTI, E. & VERNOS, I. (1996) Xklp2, a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis. Cell 84, 49–59.

    Google Scholar 

  • DENT, E. W., CALLAWAY, J. L., SZEBENYI, G., BAAS, P. W. & KALIL, K. (1999) Reorganization and movement of microtubules in growth cones and developing interstitial branches. Journal of Neuroscience 9, 8894–8904.

    Google Scholar 

  • DILLMANN III, J. F., DABNEY, L. P. & PFISTER, K. K. (1996) Cytoplasmic dynein is associated with slow axonal transport. Proceedings of the National Acadamy Science USA 93, 141–144.

    Google Scholar 

  • FENG, Y. & WALSH, C. A. (2001) Protein-protein interactions, cytoskeletal regulation and neuronal migration. Nature Reviews Neuroscience 2, 408–416.

    Google Scholar 

  • FERHAT, L., COOK, C., CHAUVIERE, M., HARPER, M., KRESS, M., LYONS, G. E. & BAAS, P. W. (1998) Expression of the mitotic motor protein Eg5 in postmitotic neurons: Implications for neuronal development. Journal of Neuroscience 18, 7822–7835.

    Google Scholar 

  • HAENDEL, M. A., BOLLINGER, K. E. & BAAS, P. W. (1996) Cytoskeletal changes during neurogenesis in cultures of avian neural crest cells. Journal of Neurocytology 25, 289–301.

    Google Scholar 

  • HATTEN, M. E. (1999) Central nervous system neuronal migration. Annual Review of Neuroscience 22, 511–539.

    Google Scholar 

  • HE, Y. & BAAS, P. W. (2003) Growing and working with peripheral neurons. In Nerve Cell Biology (edited by HOLLENBECK, P. & BAMBURG, J.), a volume in Methods in Cell Biology 71, 17–35.

  • HUANG, J.-D., BRADY, S. T., RICHARDS, B. W., STENOLEN, D., RESAU, J. H., COPELAND, N. G. & JENKINS, N. A. (1999) Direct interaction of microtubule-and actin-based transport motors. Nature 397, 267–270.

    Google Scholar 

  • KURIYAMA, R., GUSTUS, C., TERADA, Y., UETAKE, Y. & MATULIENE, J. (2002) CHO1, a mammalian kinesinlike protein, interacts with F-actin and is involved in the terminal phase of cytokinesis. Journal of Cell Biology 156, 783–790.

    Google Scholar 

  • NAKAGAWA, T., TANAKA, Y., MATSUOKA, E., KONDO, S., OKADA, Y., NODA, Y., KANAI, Y. & HIROKAWA, N. (1997) Identification and classification of 16 new kinesin superfamily (KIF) proteins in mouse genome. Proceedings of the National Academy Science USA 94, 9654–9659.

    Google Scholar 

  • RIVAS, R. J., BURMEISTER, D. W. & GOLDBERG, D. J. (1992) Rapid effects of laminin on the growth cone. Neuron 8, 107–115.

    Google Scholar 

  • RIVAS, R. J. & HATTEN, M. E. (1995) Motility and cytoskeletal organization of migrating cerebellar granule neurons. Journal of Neuroscience 15, 981–989.

    Google Scholar 

  • ROGERS, G. C., CHUI, K. K., LEE, E. W., WEDAMAN, K. P., SHARP, D. J., HOLLAND, G., MORRIS, R. L. & SCHOLEY, J. M. (2000) A kinesin-related protein, KRP180, positions prometaphase spindle poles during early sea urchin embryonic cell division. Journal of Cell Biology 150, 499–511.

    Google Scholar 

  • SAMBROOK, J., FRITSCH, E. F. & MANIATIS, T. (1989) Molecular Cloning. A Laboratory Manual. 2nd edition. Cold Spring Harbor Laboratory Press.

  • SHARP, D. J., ROGERS, G. C. & SCHOLEY, J. M. (2000) Microtubule motors in mitosis. Nature 407, 41–47.

    Google Scholar 

  • SHARP, D. J., YU, W. & BAAS, P. W. (1995) Transport of dendritic microtubules establishes their nonuniform polarity orientation. Journal of Cell Biology 130, 93–104.

    Google Scholar 

  • SHARP, D. J., YU, W., FERHAT, L., KURIYAMA, R., RUEGER, D. C. & BAAS, P. W. (1997) Identification of a microtubule-associated motor protein essential for dendritic differentiation. Journal of Cell Biology 138, 833–843.

    Google Scholar 

  • SLAUGHTER, T. S., WANG, J. & BLACK, M. M. (1997) Transport of microtubules from the cell body into the axons of cultured neurons. Journal of Neuroscience 17, 5807–5819.

    Google Scholar 

  • SMITH, D. S., NIETHAMMER, M., AYALA, R., ZHOU, Y., GAMBELLO, M. J., WYNSHAW-BORIS, A. & TSIA, L.-H. (2000) Regulation of cytoplasmic dynein behavior and microtubule organization by mammalian Lis1. Nature Cell Biology 2, 767–775.

    Google Scholar 

  • SUEISHI, M., TAKAGI, M. & YONEDA, Y. (2000) The forkhead-associated domain of Ki-67 antigen interacts with the novel kinesin-like protein Hklp2. Journal of Biological Chemistry 275, 28888–28892.

    Google Scholar 

  • TRENKNER, E. (1991) Cerebellar cells in culture. In Culturing Nerve Cells (edited by BANKER, G. & GOSLIN, K.) pp. 283–307. MIT Press.

  • TANG, D. & GOLDBERG, D. J. (2000) Bundling of microtubules in the growth cone induced by laminin. Molecular and Cellular Neuroscience 15, 303–313.

    Google Scholar 

  • WANG, L. & BROWN, A. (2002) Rapid movement of microtubules in axons. Current Biology 12, 1496–1501.

    Google Scholar 

  • WITTMANN, T., HYMAN, A. & DESAI, A. (2001) The spindle: A dynamic assembly of microtubules and motors. Nature Cell Biology 3, E28–E34.

    Google Scholar 

  • WITTMANN, T., WILM, M., KARSENTI, E. & VERNOS, I. (2000) TPX2, a novel XenopusMAPinvolved in spindle pole organization. Journal of Cell Biology 149, 1405–1418.

    Google Scholar 

  • WYNSHAW-BORIS, A. & GAMBELLO, M. J. (2001) LIS1 and dynein motor function in neuronal migration and development. Genes & Development 15, 639–651.

    Google Scholar 

  • YU, W., AHMAD, F. J. & BAAS, P. W. (1994) Microtubule fragmentation and partitioning in the axon during collateral branch formation. Journal of Neuroscience 14, 5872–5984.

    Google Scholar 

  • YU, W., COOK, C., KURIYAMA, R., KAPLAN, P. L. & BAAS, P. W. (2000) Depletion of a microtubuleassociated motor protein induces the loss of dendritic identity. Journal of Neuroscience 20, 5782–5781.

    Google Scholar 

  • YU, W., LING, C. & BAAS, P. W. (2001) Microtubule reconfiguration during axogenesis. Journal of Neurocytology 30, 861–875.

    Google Scholar 

  • YU, W., SCHWEI, M. J. & BAAS, P. W. (1996) Microtubule transport and assembly during axon growth. Journal of Cell Biology 133, 151–157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buster, D.W., Baird, D.H., Yu, W. et al. Expression of the mitotic kinesin Kif15 in postmitotic neurons: Implications for neuronal migration and development. J Neurocytol 32, 79–96 (2003). https://doi.org/10.1023/A:1027332432740

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027332432740

Keywords

Navigation