Skip to main content
Log in

DNA Damage Profiling in Motor Neurons: A Single-Cell Analysis by Comet Assay

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We developed a method to measure DNA damage in single motor neurons (MN). A cell fraction enriched in viable α-motor neurons was isolated from adult rat spinal cord. This cell preparation was used to measure the vulnerability of the MN genome to different reactive oxygen species (ROS). MN were exposed in vitro to hydrogen peroxide, nitric oxide and peroxynitrite. Specific types of DNA lesions (e.g., abasic sites, single-strand breaks, and double-strand breaks) were measured using single-cell gel electrophoresis (comet assay). The MN genome was very susceptible to attack by ROS. Different ROS induced different DNA damage profiles in MN. MN were also isolated from adult rats with sciatic nerve avulsions to show that DNA damage emerges early during their degeneration in vivo. This study demonstrates that the comet assay is a feasible method for profiling DNA lesions in the genome of single MN. Viable mature MN can be isolated and used for in vitro models of MN genotoxicity and can be isolated from in vivo models of MN degeneration for profiling DNA damage on a single-cell basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature 362:709-715.

    Google Scholar 

  2. Subba Rao, K. 1993. Genomic damage and its repair in young and aging brain. Mol. Neurobiol. 7:23-48.

    Google Scholar 

  3. Kisby, G. E., Kabel, H., Hugon, J., and Spencer, P. 1999. Damage and repair of nerve cell DNA in toxic stress. Drug Metabol. Rev. 31:589-618.

    Google Scholar 

  4. Martin, L. J. 2000. p53 is abnormally elevated and active in the CNS of patients with amyotrophic lateral sclerosis. Neurobiol. Dis. 7:613-622.

    Google Scholar 

  5. Martin, L. J. 2001. Neuronal cell death in nervous system development, disease, and injury. Int. J. Mol. Med. 7:455-478.

    Google Scholar 

  6. Shaikh, A. Y. and Martin, L. J. 2002. DNA base-excision repair enzyme apurinic/apyrimidinic endonuclease/redox factor-1 is increased and competent in the brain and spinal cord of individuals with amyotrophic lateral sclerosis. Neuromol. Med. 2:47-60.

    Google Scholar 

  7. Kohn, K. W. 1991. Principles and practice of DNA filter elution. Pharmac. Ther. 49:55-77.

    Google Scholar 

  8. Bradley, W. G. and Krasin, F. 1982. A new hypothesis of the etiology of amyotrophic lateral sclerosis. The DNA hypothesis. Arch. Neurol. 39:677-680.

    Google Scholar 

  9. Östling, O. and Johansson, K. J. 1984. Microelectrophoretic study of radiation-induced DNA damage in individual mammalian cells. Biochem. Biophys. Res. Commun. 123:291-298.

    Google Scholar 

  10. Singh, N. P., McCoy, M. T., Tice, R. R., and Schneider, E. L. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175:184-191.

    Google Scholar 

  11. Kindzelskii, A. L. and Petty, H. R. 1999. Ultrasensitive detection of hydrogen peroxide-mediated DNA damage after alkaline single cell gel electrophoresis using occultation microscopy and TUNEL labeling. Mutat. Res. 426:11-22.

    Google Scholar 

  12. Morris, E. J., Drexiler, J. C., Cheng, K.-Y., Wilson, P. M., Gin, R. M., and Geller, H. M. 1999. Optimization of single-cell gel electrophoresis (SCGE) for quantitative analysis of neuronal DNA damage. BioTechniques 26:282-289.

    Google Scholar 

  13. Tice, R. R., Agurell, E., Anderson, D., Burlison, B., Hartmann, A., Kobayashi, H., Miyamae, Y., Rojas, E., Ryu, J.-C., and Sasaki, Y. F. 2000. Single cell gel/comet assay: guidelines for in vitro and an in vivo genetic toxicological testing. Environ. Mol. Mutag. 35:206-221.

    Google Scholar 

  14. Martin, L. J., Kaiser, A., and Price, A. C. 1999. Motor neuron degeneration after sciatic nerve avulsion in adult rat evolves with oxidative stress and is apoptosis. J. Neurobiol. 40:185-201.

    Google Scholar 

  15. Martin, L. J. and Liu, Z. 2002. Injury-induced spinal motor neuron apoptosis is preceded by DNA single-strand breaks and is p53-and bax-dependent. J. Neurobiol. 5:181-197.

    Google Scholar 

  16. Hrabie, J. A., Klose, J. R., Wink, D. A., and Keer, L. K. 1993. New nitric oxide-releasing zwitterions derived from polyamines. J. Org. Chem. 58:1472-1476.

    Google Scholar 

  17. Beckman, J. S., Carson, M., Smith, C. D., and Koppenol, W. H. 1993. ALS, SOD and peroxynitrite. Nature 364:548.

    Google Scholar 

  18. Hellman, B., Vaghef, H., and Boström, B. 1995. The concept of tail moment and tail inertia in the single cell gel electrophoresis assay. Mutat. Res. 336:123-131.

    Google Scholar 

  19. Liu, Z. and Martin, L. J. 2001. Motor neurons rapidly accumulate DNA single strand breaks after in vitro exposure to nitric oxide and peroxynitrite and in vivo axotomy. J. Comp. Neurol. 432:35-60.

    Google Scholar 

  20. Liu, Z. and Martin, L. J. 2001. Isolation of mature spinal motor neurons and single cell analysis using the comet assay of early low-level DNA damage induced in vitro and in vivo. J. Histochem. Cytochem. 49:957-972.

    Google Scholar 

  21. Fitzmaurice, P. S., Shaw, I. C., Kleiner, H. E., Miller, R. T., Monks, T. J., Lau, S. S., Mitchell, J. D., and Lynch, P. G. 1996. Evidence for DNA damage in amyotrophic lateral sclerosis. Muscle Nerve 19:797-798.

    Google Scholar 

  22. Ferrante, R. J., Browne, S. E., Shinobu, L. A., Bowling, A. C., Baik, M. J., MacGarvey, U., Kowall, N. W., Brown, R. H., Jr., and Beal, M. F. 1997. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem. 69:2064-2074.

    Google Scholar 

  23. Lesuisse, C. and Martin, L. J. 2002. Long-term culture of mouse cortical neurons as a model for neuronal development, aging, and death. J. Neurobiol. 51:9-23.

    Google Scholar 

  24. Lesuisse, C. and Martin, L. J. 2002. Immature and mature cortical neurons engage different apoptotic mechanisms involving caspase-3 and the MAP kinase pathway. J. Cereb. Blood Flow Metab., 22:935-950.

    Google Scholar 

  25. Nieves-Neira, W. and Pommier, Y. 1999. Apoptotic response to camptothecin and 7-hydroxystaurosporine (UCN-01) in the 8 human breast cancer cell lines of the NCI anticancer drug screen: multifactorial relationships with topoisomerase 1, protein kinase C, Bcl-2, p53, MDM-2 and caspase pathways. Int. J. Cancer 82:396-404.

    Google Scholar 

  26. Henderson, C. E., Bloch-Gallego, E., and Camu, W. 1995. Purified embryonic motoneurons. Pages 69-81, in Cohen, J. and Wilkin, G. (eds.), Nerve Cell Culture: A Practical Approach. Oxford University Press, London.

    Google Scholar 

  27. Portera-Cailliau, C., Price, D. L., and Martin, L. J. 1997. Non-NMDA and NMDA receptor-mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: further evidence for an apoptosis-necrosis continuum. J. Comp. Neurol. 378:87-104.

    Google Scholar 

  28. Lai, H. and Singh, N. P. 1995. Acute low-intensity microwave exposure increases DNA single-strand breaks in rat brain cells. Bioelectromagnetics 16:207-210.

    Google Scholar 

  29. Kohn, K. W., Erickson, L. C., Ewig, R. A. G., and Friedman, C. A. 1976. Fractionation of DNA from mammalian cells by alkaline elution. Biochemistry 15:4629-4637.

    Google Scholar 

  30. Mendiola-Cruz, M. T. and Morales-Ramirez, P. 1999. Repair kinetics of gamma-ray induced DNA damage determined by single cell gel electrophoresis assay in murine leukocytes in vivo. Mutat. Res. 433:45-52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, L.J., Liu, Z. DNA Damage Profiling in Motor Neurons: A Single-Cell Analysis by Comet Assay. Neurochem Res 27, 1093–1104 (2002). https://doi.org/10.1023/A:1020961006216

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020961006216

Navigation