Skip to main content
Log in

Programs of Gene Expression During the Laying Down of Memory Formation as Revealed by DNA Microarrays

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Many experiments in the past have demonstrated the requirement of de novo gene expression during memory formation. In contrast to the initial reductionistic view that genes relevant to learning and memory would be easily found and would provide a simple key to understand this brain function, it is becoming apparent that the genetic contribution to memory is complex. Previous approaches have been focused on individual genes or genetic pathways and failed to address the massively parallel nature of genome activities and collective behavior of the genes that ultimately control the molecular mechanisms underlying brain function. In view of the broad variety of genes and the cross talk of genetic pathways involved in this regulation, only gene expression profiles may reflect the complete behavior of regulatory pathways. In this review we illustrate how DNA microarray-based gene expression profiling may help to dissect and analyze the complex mechanisms involved in gene regulation during the acquisition and storage of memory in the mammalian brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. James, W. 1890. The Principles of Psychology, New York, Holt, Rinehart and Winston.

    Google Scholar 

  2. Davis, H. P. and Squire, L. R. 1984. Protein synthesis and memory: a review. Psychol. Bull. 96:518-559.

    Google Scholar 

  3. Stork, O. and Welzl, H. 1999. Memory formation and the regulation of gene expression. Cell. Mol. Life Sci. 55:575-592.

    Google Scholar 

  4. Cavallaro, S., Meiri, N., Yi, C., Musco, S., Ma, W., Goldberg, J., and Alkon, D. L. 1997. Late memory-related genes in the hippocampus revealed by RNA fingerprinting. Proc. Natl. Acad. Sci. USA 94:9669-9673.

    Google Scholar 

  5. Zhao, W., Meiri, N., Xu, H., Cavallaro, S., Quattrone, A., Zhang, L., and Alkon, D. L. 2000. Spatial learning induced changes in expression of the ryanodine type II receptor in the rat hippocampus. FASEB J. 14:290-300.

    Google Scholar 

  6. Arnone, M. I. and Davidson, E. H. 1997. The hardwiring of development: organization and function of genomic regulatory systems. Development 124:1851-1864.

    Google Scholar 

  7. Miklos, G. L. and Rubin, G. M. 1996. The role of the genome project in determining gene function: insights from model organisms. Cell 86(4):521-529.

    Google Scholar 

  8. The Chipping Forecast. 1999. Nat. Genet. 21, Suppl.

  9. Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95(25):14863-14868.

    Google Scholar 

  10. Cavallaro, S., Schreurs, B. G., Zhao, W., D'Agata, V., and Alkon, D. L. 2001. Gene expression profiles during long-term memory consolidation. Eur. J. Neurosci. 13:1809-1815.

    Google Scholar 

  11. Gormezano, I., Schneiderman, N., Deaux, E., and Fuentes, I. 1962. Nictitating membrane: Classical conditioning and extinction in the albino rabbit. Science 138:33-35.

    Google Scholar 

  12. Yeo, C. H., Hardiman, M. J., and Glickstein, M. 1985. Classical conditioning of the nictitating membrane response of the rabbit. Exp. Brain Res. 60:99-113.

    Google Scholar 

  13. Berthier, N. E. and Moore, J. W. 1986. Cerebellar Purkinje cell activity related to the classically conditioned nictitating membrane response. Exp. Brain Res. 63:341-350.

    Google Scholar 

  14. Schreurs, B. G., Sanchez-Andres, J. V., and Alkon, D. L. 1991. Learning-specific differences in Purkinje-cell dendrites of lobule HVI (Lobulus simplex): intracellular recording in a rabbit cerebellar slice. Brain Res. 548:18-22.

    Google Scholar 

  15. Gruart, A. and Yeo, C. H. 1995. Cerebellar cortex and eyeblink conditioning: bilateral regulation of conditioned responses. Exp. Brain Res. 104:431-438.

    Google Scholar 

  16. Gould, T. J. and Steinmetz, J. E. 1996 Changes in rabbit cerebellar cortical and interpositus nucleus activity during acquisition, extinction, and backward classical eyelid conditioning. Neurobiol. Learn. Mem. 65:17-34.

    Google Scholar 

  17. Schreurs, B. G., Tomsic, D., Gusev, P. A., and Alkon, D. L. 1997. Dendritic excitability microzones and occluded long-term depression after classical conditioning of the rabbit's nictitating membrane response. J. Neurophysiol. 77:86-92.

    Google Scholar 

  18. Schreurs, B. G., Gusev, P. A., Tomsic, D., Alkon, D. L., and Shi, T. 1998. Intracellular correlates of acquisition and longterm memory of classical conditioning in Purkinje cell dendrites in slices of rabbit cerebellar lobule HVI. J. Neurosci. 18:5498.

    Google Scholar 

  19. Coulter, D. A., Lo Turco, J. J., Kubota, M., Disterhoft, J. F., Moore, J. W., and Alkon, D. L. 1989. Classical conditioning reduces amplitude and duration of calcium-dependent afterhyperpolarization in rabbit hippocampal pyramidal cells. J. Neurophysiol. 61:971-981.

    Google Scholar 

  20. Sanchez-Andres, J. V. and Alkon, D. L. 1991. Voltage-clamp analysis of the effects of classical conditioning on the hippocampus. J. Neurophysiol. 65:796-807.

    Google Scholar 

  21. Molchan, S. E., Sunderland, T., McIntosh, A. R., Herscovitch, P., and Schreurs, B. G. 1994. A functional anatomical study of associative learning in humans. Proc. Natl. Acad. Sci. USA 91:8122-8126.

    Google Scholar 

  22. Logan, C. G. and Grafton, S. T. 1995. Functional anatomy of human eyeblink conditioning determined with regional cerebral glucose metabolism and positron-emission tomography. Proc. Natl. Acad. Sci. USA 92:7500-7504.

    Google Scholar 

  23. Blaxton, T. A., Zeffiro, T. A., Gabrieli, J. D. E., Bookheimer, S. Y., Carrillo, M. C., Theodore, W. H., and Disterhoft, J. F. 1996. Functional mapping of human learning: a positron emission tomography activation study of eyeblink conditioning. J. Neurosci. 16:4032-4040.

    Google Scholar 

  24. Schreurs, B. G., McIntosh, A. R., Bahro, M., Herscovitch, P., Sunderland, T., and Molchan, S. E. 1997. Lateralization and behavioral correlation of changes in regional cerebral blood flow with classical conditioning of the human eyeblink response. J. Neurophysiol. 77:2153-2163.

    Google Scholar 

  25. Alberini, C. M., Ghirardi, M., Metz, R., and Kandel, E. R. 1994. C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in Aplysia. Cell 76:1099-1114.

    Google Scholar 

  26. Nieto-Bona, M. P., Garcia-Segura, L. M., and Torres-Aleman I. 1997. Transynaptic modulation by insulin-like growth factor 1 of dendritic spines in Purkinje cells. Int. J. Dev. Neurosci. 15:749-754.

    Google Scholar 

  27. Castro-Alamancos, M. A. and Torres-Aleman, I. 1993. Longterm depression of glutamate-induced gamma-aminobutyric acid release in cerebellum by insulin-like growth factor 1. Proc. Natl. Acad. Sci. USA 90:7386-7390.

    Google Scholar 

  28. Aleman, A., de Vries, W. R., de Haan, E. H., Verhaar, H. J., Samson, M. M., and Koppeschaar, H. P. 2000. Age-sensitive cognitive function, growth hormone and insulin-like growth factor 1 plasma levels in healthy older men. Neuropsychobiol. 41:73-78.

    Google Scholar 

  29. Markowska, A. L., Mooney, M., and Sonntag, W. E. 1998. Insulin-like growth factor-1 ameliorates age-related behavioral deficits. Neuroscience 87:559-569.

    Google Scholar 

  30. Taubenfeld, S. M., Wiig, K. A., Monti, B., Dolan, B., Pollonini, G., and Alberini, C. M. 2001 Fornix-dependent induction of hippocampal CCAAT enhancer-binding protein ta and δ co-localizes with phosphorylated cAMP response element-binding protein and accompanies long-term memory consolidation. J. Neurosci. 21:84-91.

    Google Scholar 

  31. Sterneck, E., Paylor, R., Jackson-Lewis, V., Libbey, M., Przedborski, S., Tessarollo, L., Crawley, J. N., and Johnson, P. F. 1998. Selectively enhanced contextual fear conditioning in mice lacking the transcriptional regulator CCAAT/enhancer binding protein delta. Proc. Natl. Acad. Sci. USA 95:10908-10913.

    Google Scholar 

  32. Osborne, L. R., Campbell, T., Daradich, A., Scherer, S. W., and Tsui, L. C. 1999. Identification of a putative transcription factor gene (WBSCR11) that is commonly deleted in Williams-Beuren syndrome. Genomics 57:279-284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavallaro, S., D'Agata, V. & Alkon, D.L. Programs of Gene Expression During the Laying Down of Memory Formation as Revealed by DNA Microarrays. Neurochem Res 27, 1201–1207 (2002). https://doi.org/10.1023/A:1020933627597

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020933627597

Navigation