Skip to main content

Advertisement

Log in

Modeling the contribution of lamina 5 neuronal and network dynamics to low frequency EEG phenomena

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The Electroencephalogram (EEG) is an important clinical and research tool in neurophysiology. With the advent of recording techniques, new evidence is emerging on the neuronal populations and wiring in the neocortex. A main challenge is to relate the EEG generation mechanisms to the underlying circuitry of the neocortex. In this paper, we look at the principal intrinsic properties of neocortical cells in layer 5 and their network behavior in simplified simulation models to explain the emergence of several important EEG phenomena such as the alpha rhythms, slow-wave sleep oscillations, and a form of cortical seizure. The models also predict the ability of layer 5 cells to produce a resonance-like neuronal recruitment known as the augmenting response. While previous models point to deeper brain structures, such as the thalamus, as the origin of many EEG rhythms (spindles), the current model suggests that the cortical circuitry itself has intrinsic oscillatory dynamics which could account for a wide variety of EEG phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Armstrong-James M, Fox K, Das-Gupta A (1992) Flow of excitation within rat barrel cortex on striking a single vibrissa. J Neurophysiol 68:1345–1358

    PubMed  CAS  Google Scholar 

  • Basar E, Basar-Eroglu C, Karakas S, Schurmann M (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39:241–248

    Article  PubMed  CAS  Google Scholar 

  • Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (1998a) Computational models of thalamocortical augmenting responses. J Neurosci 18:6444–6465

    CAS  Google Scholar 

  • Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (1998b) Cellular and network models for intrathalamic augmenting responses during 10 Hz stimulation. J Neurophysiol 79:2739–2748

    Google Scholar 

  • Burger T, Larkum ME, Luscher H-R (2001) High I h channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J Neurophysiol 85:855–868

    Google Scholar 

  • Burger T , Senn W, Luscher, H (2003) Hyperpolarization-activated current I h disconnects somatic and dendritic spike initiation zones in layer V pyramidal neurons. J Neurophysiol 90(4):2428–2437

    Article  Google Scholar 

  • Brumberg J, Pinto D, Simons D (1999) Cortical columnar processing in the rat whisker-to-barrel system. J Neurophysiol 82:1808–1817

    PubMed  CAS  Google Scholar 

  • Bush P (1995) Compartmental models of single neurons and small networks in the primary visual cortex of the cat. PhD dissertation, University of California, San Diego

  • Callaway EM (1998) Local circuits in primary visual cortex of the macaque monkey. Annu Rev Neurosci 21:47–74

    Article  PubMed  CAS  Google Scholar 

  • Castros-alamancos MA, Connors B (1996a) Cellular mechanisms of the augmenting response: short-term plasticity in a thalamocortical pathway. J Neurosci 16:7742–7756

    Google Scholar 

  • Castro-Alamancos MA, Connors B (1996b) Spatiotemporal properties of short term plasticity in sensorimotor thalamocortical pathways of the rat. J Neurosci 16:2767–2779

    PubMed  CAS  Google Scholar 

  • Castro-Alamancos MA (2000) Origin of synchronized oscillations induced by neocortical disinhibition in vivo. J Neurosci 20:9195–9206

    PubMed  CAS  Google Scholar 

  • Cauller LJ, Clancy B, Connors BW (1998) Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I. J Comp Neurol 390:297–310

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Zhang JJ, Hu GY, Wu CP (1996) Electrophysiological and morphological properties of pyramidal and nonpyramidal neurons in the cat motor cortex in vitro. Neuroscience 73:39–55

    Article  PubMed  CAS  Google Scholar 

  • Contreras D, Destexhe A, Sejnowski TJ, Steriade M (1997) Spatiotemporal patterns of spindle oscillations in cortex and thalamus. J Neurosci 17:1179–1196

    PubMed  CAS  Google Scholar 

  • Compte A, Sanchez-Vives MV, McCormick DA, Wang X-J (2003) Cellular and Network Mechanisms of slow oscillatory activity (< 1 Hz) and wave propagations in a cortical network model. J Neurophysiol 89:2707–2725

    Article  PubMed  Google Scholar 

  • Destexhe A, Bal T, McCormick DA, Sejnowski TJ (1996) Mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol 76:2049–2070

    PubMed  CAS  Google Scholar 

  • Destexhe A, Mainen Z, Sejnowksi TJ (1998) in Koch C, Segev I (ed) Methods in neuronal modeling, pp 1–25. MIT, Cambridge

  • Destexhe A, Contreras D, Steriade M (1999) Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J Neurosci 19:4595–4608

    PubMed  CAS  Google Scholar 

  • Destexhe A (2001) LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations. Neurocomputing 38:555–563

    Article  Google Scholar 

  • Durstewitz D, Seamans JK, Sejnowski TJ (2000) Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol 83:1733–1750

    PubMed  CAS  Google Scholar 

  • Feldmeyer D, Sakmann B (2000) Synaptic efficacy and reliability of excitatory connections between the principal neurons of the input (layer 4) and output layer (layer 5) of the neocortex. J Physiol 525:31–39

    Article  PubMed  CAS  Google Scholar 

  • Fellman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1– 47

    Google Scholar 

  • Galarreta M, Hestrin S (2000) Burst firing induces a rebound of synaptic strength at unitary neocortical synapses. J Neurophysiol 83:621–624

    PubMed  CAS  Google Scholar 

  • Gernier F, Timofeev I, Steriade M (1998) Leading role of thalamic over cortical neurons during postinhibitory rebound excitation. Proc Natl Acad Sci USA 95:13929–13934

    Article  Google Scholar 

  • Ghazanfar A, Nicolelis M (1999) Spatiotemporal properties of layer V neurons of the rat primary somatosensory cortex. Cereb Cortex 9:348–361

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JH, Lacefield CO, Yuste R (2004) Global dendritic spikes in mouse layer 5 low threshold spiking interneurons: implications for control of pyramidal cell bursting. J Physiol 558.2:465–478

    Article  PubMed  CAS  Google Scholar 

  • Hefti B, Smith P (2000) Anatomy, physiology, and synaptic responses of rat layer V auditory cortical cells and effects of intracellular GABA-a blockade. J Neurophysiol 83:2626–2638

    PubMed  CAS  Google Scholar 

  • Helmchen F, Imoto K, Sakmann B (1996) Ca2+ buffering and action 1173, 1992. potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys J (70):1069– 1081

    Article  PubMed  CAS  Google Scholar 

  • Huguenard JR, Mccormick DA (1992) Simulation of the currents in volved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 68:1373–1383

    PubMed  CAS  Google Scholar 

  • Jones SR, Pinto DJ, Kaper TJ, Kopell N (2000) Alpha-frequency rhythms desynchronize over long cortical distances: a modeling study. J Comput Neurosci 9:271–291

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Cho R, Li Y, Nomura S, Mizunp N (2000) Predominant information transfer from layer III pyramidal neurons to corticospinal neurons. J Comp Neurol 423:52–65

    Article  PubMed  CAS  Google Scholar 

  • Karameh F. N. (2002) A model for cerebral cortical neuronal group electric activity and its implications for cerebral function. PhD dissertation (MIT, 2002), Cambridge

  • Katzenelson RD (1982) Deterministic and stochastic field theoretic models in the neurophysics of EEG. PhD dissertation, UCSD

  • Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7:476–486

    Article  PubMed  CAS  Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195

    Article  PubMed  CAS  Google Scholar 

  • Larkum ME, Zhu JJ, Sakmann B (1999a) A new cellular mechanism for coupling inputs arriving at different cortical layer. Nature (Lond) 398:338–341

    Article  CAS  Google Scholar 

  • Larkum ME, Kaiser KMM , Sakmann B (1999b) Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. Proc Natl Acad Sci USA 96:14600–14604

    Article  PubMed  CAS  Google Scholar 

  • Larkum ME, Senn W, Luscher H-R (2004) Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cereb Cortex. DOI: 10.1093/cercor/bhh065

  • Lopes da Silva F (1991) Neural mechanisms underlying brain waves: from neural mechanisms to networks. Electroencephalogr Clin Neurophysiol 79:81–93

    Article  CAS  Google Scholar 

  • Markram H (1997) A network of tufted layer 5 pyramidal neurons. Cereb Cortex 7:523–533

    Article  PubMed  CAS  Google Scholar 

  • Massimini M, Amzica F (2001) Extracellular calcium fluctuations and intracellular potentials in the cortex during the slow sleep oscillation. J Neurophysiol 85:1346–1350

    PubMed  CAS  Google Scholar 

  • McCormick D, Huguenard J (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 68:1384–1400

    PubMed  CAS  Google Scholar 

  • Mima T, Oluwatimlehin T, Hiroaka T, Hallet M (2001) Transient interhemispheric neuronal synchrony correlates with object recognition. J Neurosci 21:3942–3948

    PubMed  CAS  Google Scholar 

  • Mormann F, Elger CE, Lehnertz K (2006) Seizure anticipation: from algorithms to clinical practice. Curr Opin Neurol 19(2):187–193

    Article  PubMed  Google Scholar 

  • Mouncastle VB (1998) Perceptual neuroscience, the cerebral cortex. Harvard University press, Cambridge

    Google Scholar 

  • Nunez A, Amzica F, Steriade M (1993) Electrophysiology of cat association cortical cells in vivo: intrinsic properties and synaptic responses. J Neurophysiol 70:418–429

    PubMed  CAS  Google Scholar 

  • Nunez P (1981) Electric fields of the brain. Oxford University Press, Oxford

    Google Scholar 

  • Nunez P (1995) Neocortical dynamics and human EEG rhythms. Oxford University Press, Oxford

    Google Scholar 

  • Princivalle AP, Pangalos MN, Bowery NG, Spreafico R (2000) Distribution of GABA(B) receptor protein in somatosensory cortex and thalamus of adult rats and during postnatal development. Brain Res Bull 52:397–405

    Article  PubMed  CAS  Google Scholar 

  • Raizada RD, Grossberg S (2003) Towards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system. Cereb Cortex 13(1):100–113

    Article  PubMed  Google Scholar 

  • Rhodes P, Gray CM (1994) Simulations of intrinsically bursting neocortical pyramidal neurons. Neural Comput 6:1086–1110

    Google Scholar 

  • Rhodes P, Llinas R (2001) Apical tuft input efficacy in layer 5 pyramidal cells from rat visual cortex. J Physiol 536:167–187

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Vives M, McCormick D (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3:1027–1034

    Article  PubMed  CAS  Google Scholar 

  • Schubert D, Staiger JF, Cho N, Kotter R, Zilles K, Luhmann HJ (2001) Layer-specific intracolumnar and transcolumnar functional connectivity of layer V pyramidal cells in rat barrel cortex. J Neurosci 21:3580–3592

    PubMed  CAS  Google Scholar 

  • Schwindt P, Crill W (1999) Mechanisms underlying burst and regular spiking evoked by dendritic depolarization in layer 5 cortical pyramidal neurons. J Neurophysiol 81:1341–1354

    PubMed  CAS  Google Scholar 

  • Sinton CM, McCarley RW (2000) Neuroanatomical and neurophysiological aspects of sleep: basic science and clinical relevance. Semin Clin Neuropsychatry 5(1):6–19

    CAS  Google Scholar 

  • Spain W, Schwindt P, Crill W (1991) Post-inhibitory excitation and inhibition in layer V pyramidal neurons from cat sensorimotor cortex. J Physiol 434:609–626

    PubMed  CAS  Google Scholar 

  • Steriade M, Amzica F, Neckelmann D, Timofeev I (1998) Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns. J Neurophysiol 80:1456–1479

    PubMed  CAS  Google Scholar 

  • Steriade M, Timoofeev I, Gernier F, Durmuller N (1998b) Role of thalamic and cortical neurons in augmenting responses and self sustained activity: dual intracellular recordings in vivo. J Neurosci 18:6425–6443

    CAS  Google Scholar 

  • Steriade M, Timofeev I, Gernier F (2001) Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85:1969–1985

    PubMed  CAS  Google Scholar 

  • Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3(4):151–162

    Article  PubMed  Google Scholar 

  • Tamas G, Buhl E, Lorinz A, Somogyi P (2000) Proximally targeted GABAeric synapses and gap junctions synchronize cortical interneurons. Nat Neurosci 3:366–371

    Article  PubMed  CAS  Google Scholar 

  • Thomson A, Deuchars J (1997) Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. Cereb Cortex 7:510–522

    Article  PubMed  CAS  Google Scholar 

  • Thomson A, Bannister A (1998) Postsynaptic pyramidal target selection by descending layer III pyramidal axons. Neuroscience 84:669–683

    Article  PubMed  CAS  Google Scholar 

  • Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade M (2000) Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex 10:1185–1199

    Article  PubMed  CAS  Google Scholar 

  • Tung A (2005) New anesthesia techniques. Thorac Surg Clin 15(1):27–38

    Article  PubMed  Google Scholar 

  • Van Brederode J, Spain W (1995) Differences in inhibitory synaptic input between layer II–III and layer V neurons of the cat neocortex. J Neurophysiol 74:1149–1166

    PubMed  Google Scholar 

  • Wang Z, McCormick D (1993) Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by Norepinephrine, acetylcholine and 1S,3R-ACPD. J Neurosci 13:2199–2216

    PubMed  CAS  Google Scholar 

  • Wang X-J (1999) Fast burst firing and short-term synaptic plasticity: a model of neocortical chattering neurons. Neuroscience 89(2):347–362

    Article  PubMed  CAS  Google Scholar 

  • Williams S, Stuart G (1999) Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons. J Physiol 521:467–482

    Article  PubMed  CAS  Google Scholar 

  • Wilson H (1999) Simplified dynamics of human and mammalian neocortical neurons. J Theor Biol 200:375–388

    Article  PubMed  CAS  Google Scholar 

  • Wright JJ, Lilet DT (1995) Simulation of electrocortical waves. Biol Cybern 72:347–356

    PubMed  CAS  Google Scholar 

  • Wu J-Y, Guan L, Yuang T (1999) Propagating activation during oscillations and evoked responses in neocortical slices. J Neurosci 19:5005–5015

    PubMed  CAS  Google Scholar 

  • Xiang Z, Huhuenard J, Prince D (1998) Cholinergic switching within neocortical inhibitory networks. Science 281:985–988

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi N. Karameh.

Additional information

Sensorimotor Control Project- MIT Harvard NeuroEngineering Research Collaborative.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karameh, F.N., Dahleh, M.A., Brown, E.N. et al. Modeling the contribution of lamina 5 neuronal and network dynamics to low frequency EEG phenomena. Biol Cybern 95, 289–310 (2006). https://doi.org/10.1007/s00422-006-0090-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0090-8

Keywords

Navigation