Skip to main content
Log in

Hypoxic changes in Purkinje cells of the human cerebellum

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The significance of both Purkinje cell numbers and various neuronal changes for the diagnosis and timing of hypoxic-induced brain lesions was investigated in tissue samples from the cerebellar cortex of 52 individuals with a history of acute or prolonged cerebral hypoxia/ischemia before death. Furthermore, the area of the Purkinje cell somata (PC size) was measured using an automatic image processing and analysis system (LEICA QWin®). Significantly reduced numbers of Purkinje cells (<6 cells/unit length of 1 mm) and a decreased portion (<50%) of intact Purkinje cells could be detected in individuals with a period of resuscitation of at least 2 h after acute circulatory arrest. Average cell numbers of less than 4 cells/unit were found in individuals who suffered from diffuse brain swelling and were ventilated for at least 3 days, as well as in individuals who died of brain death. Moreover, the Purkinje cells in these cases exhibited shrunken somata compared to the controls. Specimens that were stored at room temperature up to 30 h after removal at autopsy showed no significant autolytic changes of the Purkinje cells. After 46 h, however, reduced Purkinje cell numbers and shrunken cell bodies were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balchen T, Diemer NH (1993) The AMPA antagonist NBQX protects against ischemic-induced loss of cerebellar Purkinje cells. Neuropharm Neurotox 3:785–788

    Google Scholar 

  2. Barenberg P, Strahlendorf H, Strahlendorf J (2001) Hypoxia induces an excitotoxic-type of dark cell degeneration in cerebellar Purkinje neurons. Neurosci Res 40:245–254

    Article  PubMed  CAS  Google Scholar 

  3. Bogolepov NN (1983) The basic patterns of pathomorphological changes in the nerve cells in various forms of oxygen deprivation of the brain. In: Bogolepov NN (ed) Ultrastructure of the brain in hypoxia. Mir Publishers, Moscow, pp 11–35

    Google Scholar 

  4. Brasko J, Rai P, Sabol MK, Patrikios P, Ross DT (1995) The AMPA antagonist NBQX provides partial protection of rat cerebellar Purkinje cells after cardiac arrest and resuscitation. Brain Res 699:133–138

    Article  PubMed  CAS  Google Scholar 

  5. Brierley JB, Graham DI (1984) Hypoxia and vascular disorders of the central nervous system. In: Adams JH, Corsellis JAN, Duchen LW (eds) Greenfield’s neuropathology, 4th edn. Edward Arnold, London, pp 125–207

    Google Scholar 

  6. Cammermeyer J (1961) The importance of avoiding dark neurons in experimental neuropathology. Acta Neuropathol 1:245–270

    Article  Google Scholar 

  7. Feldmann RE, Mattern R (2006) The human brain and its neural stem cells post-mortem: from dead brains to live therapy. Int J Legal Med 120:201–211

    Article  PubMed  Google Scholar 

  8. Hausmann R, Betz P (2001) Course of glial immunoreactivity for vimentin, tenascin and á1-antichymotrypsin after traumatic injury to human brain. Int J Legal Med 114:338–342

    Article  PubMed  CAS  Google Scholar 

  9. Hausmann R, Kaiser A, Lang C, Bohnert M, Betz P (1999) A quantitative immunohistochemical study on the time-dependent course of acute inflammatory cellular response to human brain injury. Int J Legal Med 112:227–232

    Article  PubMed  CAS  Google Scholar 

  10. Hausmann R, Rieß R, Fieguth A, Betz P (2000) Immunohistochemical investigations on the course of astroglial GFAP expression following human brain injury. Int J Legal Med 113:70–75

    Article  PubMed  CAS  Google Scholar 

  11. Hausmann R, Biermann T, Wiest I, Tübel J, Betz P (2004) Neuronal apoptosis following human brain injury. Int J Legal Med 118:32–36

    Article  PubMed  CAS  Google Scholar 

  12. Hausmann R, Vogel C, Seidl S, Betz P (2006) Value of morphological parameters for postmortem grading of brain swelling. Int J Legal Med 120:219–225

    Article  PubMed  CAS  Google Scholar 

  13. Henßge C (1990) Beweisthema todesursächliche/lebensgefährliche Halskompression: pathophysiologische Aspekte der Interpretation. In: Brinkmann B, Püschel K (eds) Ersticken, Fortschritte in der Beweisführung. Springer, Berlin Heidelberg New York, pp 3–13

    Google Scholar 

  14. Horn M, Schlote W (1992) Delayed neuronal death and delayed neuronal recovery in the human brain following global ischemia. Acta Neuropathol 85:79–87

    Article  PubMed  CAS  Google Scholar 

  15. Jortner BS (2005) Neuropathological assessment in acute neurotoxic states. The “dark” neuron. J Med CBR Def 3:1–5

    Google Scholar 

  16. Lantos PL (1990) Histological and cytological reactions. In: Weller RO (ed) Systemic pathology, nervous system, 3rd edn. Churchill Livingston, Edinburgh, pp 36–41

    Google Scholar 

  17. Larsen A, Stoltenberg M, West MJ, Danscher G (2005) Influence of bismuth on the number of neurons in cerebellum and hippocampus of normal and hypoxia-exposed mouse brain: a stereological study. J Appl Toxicol 25:383–392

    Article  PubMed  CAS  Google Scholar 

  18. Lee CH, Kim DW, Jeon GS, Roh EJ, Seo JH, Wang KCh, Cho SS (2001) Cerebellar alterations induced by chronic hypoxia: an immunohistochemical study using a chick embryonic model. Brain Res 901:271–276

    Article  PubMed  CAS  Google Scholar 

  19. Oehmichen M (1994) Brain death: neuropathological findings and forensic implications. Forensic Sci Int 69:205–219

    Article  PubMed  CAS  Google Scholar 

  20. Oehmichen M, Meissner C, v Wurmb-Schwank N, Schwank T (2003) methodical approach to brain hypoxia/ischemia as a fundamental problem in forensic neuropathology. Leg Med 5:190–201

    Article  CAS  Google Scholar 

  21. Pae EK, Chien P, Harper RM (2005) Intermittent hypoxia damages cerebellar cortex and deep nuclei. Neurosci Lett 375:123–128

    Article  PubMed  CAS  Google Scholar 

  22. Pulsinelli WA, Brierly JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498

    Article  PubMed  CAS  Google Scholar 

  23. Reeves SR, Gozal E, Guo SZ, Sachleben LR, Brittian KR, Lipton AJ, Gozal D (2003) Effect of long-term intermittent and sustained hypoxia on hypoxic ventilatory and metabolic response in the adult rat. J Appl Physiol 95:1767–1774

    PubMed  Google Scholar 

  24. Sato M, Hashimoto H, Kosaka F (1990) Histological changes of neuronal damage in vegetative dogs induced by 18 minutes of complete global brain ischemia: two-phase damage of Purkinje cells and hippocampal CA1 pyramidal cells. Acta Neuropathol 80:527–534

    Article  PubMed  CAS  Google Scholar 

  25. Yue X, Mehmet H, Penrice J, Cooper C, Cadyt E, Reynolds EOR, Adwards AD, Squier MV (1997) Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia–ischaemia. Neuropathol Appl Neurobiol 23:16–25

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hausmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hausmann, R., Seidl, S. & Betz, P. Hypoxic changes in Purkinje cells of the human cerebellum. Int J Legal Med 121, 175–183 (2007). https://doi.org/10.1007/s00414-006-0122-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-006-0122-x

Keywords

Navigation