Skip to main content
Log in

Suprathreshold excitation of frog tectal neurons by short spike trains of single retinal ganglion cell

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

It has been established that coincident inputs from multiple presynaptic axons are required to achieve a suprathreshold level of excitation for the most of central neurons. The present study, however, was designed to determine whether a train of spikes of an individual retinal ganglion cell (that is, input from a single presynaptic axon) targeting a frog tectum layer F could evoke suprathreshold excitation of tectal neurons. The lungs of immobilized frog were artificially ventilated during experiments. An individual ganglion cell was electrically stimulated in the retina through a multi-channel electrode. Responses evoked in the tectum by the stimulation were recorded extracellularly from a terminal arborization of the retinotectal fiber using the carbon-fiber microelectrode. Negative and negative-positive spikes (referred to as first type population responses) and polyphasic spikes followed by excitatory synaptic potentials (referred to as second type population responses) were observed in the recordings of retinotectal activity. Usually, the population responses have ensued after the frequency facilitated first and/or second testing individual retinotectal synaptic potential and disappeared in a threshold manner with a reduction of retinotectal transmission by an application of kynurenic acid. These observations have suggested that the population responses were a consequence of a suprathreshold excitation of tectal neurons and, therefore, could serve as the sign for such an excitation. Recordings have also demonstrated that sources of the first type population responses (likely, the hillocks of axons or somas of postsynaptic neurons) lie deeper than the optic fiber layer F of the tectum, whereas sources of the second type population responses (likely, axon terminal arborizations of these postsynaptic neurons) are scattered throughout the optic fiber layers. The findings have suggested: 1) a short train of action potentials of an individual retinal ganglion cell (likely darkness, also known as 5th, detector) can excite tectal neurons to suprathreshold level; 2) tectal and perhaps, nucleus isthmi neurons that make up recurrent connection circuits to the optic fiber layers of the tectum are also activated; 3) a suprathreshold level for an individual retinotectal input is achieved primarily due to the frequency facilitation of synaptic potentials; and 4) an artificial ventilation of the lungs of immobilized frog favors the eliciting of a suprathreshold excitation of tectal neurons, demonstrating that the ventilation certainly improves the physiological condition of a frog.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a, b
Fig. 2a–c
Fig. 3a–c
Fig. 4a–d

Similar content being viewed by others

References

  • Ali AB, Thomson AM (1998) Facilitating pyramid to horizontal oriens-alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus. J Physiol 507:185–199

    CAS  PubMed  Google Scholar 

  • Angulo MC, Rossier J, Audinat E (1999) Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex. J Neurphysiol 82:1295–1302

    CAS  Google Scholar 

  • Antal M, Matsumoto N, Szekely G (1986) Tectal neurons of the frog: intracellular recording and labeling with cobalt electrodes. J Comp Neurol 246:238–253

    CAS  PubMed  Google Scholar 

  • Araki I, De Groat WC (1996) Unitary excitatory synaptic currents in preganglionic neurons mediated by two distinct groups of interneurons in neonatal rat sacral parasympathetic nucleus. J Neurphysiol 76:215–226

    CAS  Google Scholar 

  • Baginskas A, Gutman A, Hounsgaard J, Svirskiene N, Svirskis G (1999) Semi-quantitative theory of bistable dendrites with wind-up. In: Poznanski R (ed) Mathematical modeling in the neuroscience. Harwood Academic Publishers, Amsterdam, pp 417–441

  • Blistrabas RJ, Gutman AM, Kuras AV, Mickis AM, Chusainoviene NP (1989a) Effect of cadmium ions on the synaptic transmission in the frog tectum (in Russian). Neirofiziologija 21:756–764

    CAS  Google Scholar 

  • Blistrabas R, Kuras A, Chusainoviene N (1989b) A carbon microelectrode with reduced electrical noises (in Russian). Fiziol Zh 75:1019–1023

    CAS  Google Scholar 

  • Blistrabas R, Kuras A, Chusainoviene N (1990) Effective methods for forming the recording tips of carbon-fibre microelectrodes (in Russian). Fiziol Zh 76:418–421

    Google Scholar 

  • Bollmann JH, Helmchen F, Borst JG, Sakmann B (1998) Postsynaptic Ca2+ influx mediated by three different pathways during synaptic transmission at a calyx-type synapse. J Neurosci 18:10409–10419

    CAS  PubMed  Google Scholar 

  • Buhl EH, Tamás G, Szilágyi T, Stricker C, Paulsen O, Somogyi P (1997) Effect, number and location of synapses made by single pyramidal cells onto a spiny interneurons of cat visual cortex. J Physiol 500:689–713

    CAS  PubMed  Google Scholar 

  • Coelho JE, De Mendona A, Ribeiro JA (2000) Presynaptic inhibitory receptors mediate the depression of synaptic transmission upon hypoxia in rat hippocampal slices. Brain Res 869:158–165

    CAS  PubMed  Google Scholar 

  • Debanne D, Guerineau NC, Gahlwiler BH, Thompson SM (1995) Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal slice cultures. J Neurphysiol 73:1282–1294

    CAS  Google Scholar 

  • Egger V, Feldmeyer D, Sakmann B (1999) Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat Neurosci 2:1098–1105

    Article  CAS  PubMed  Google Scholar 

  • Ewert J-P, Hock FJ, von Wietersheim A (1974) Thalamus, praetectum, tectum: retinale topographie und physiologische interaktionen bei der Krote Bufo bufo (L). J Comp Physiol 92:343–356

    Google Scholar 

  • Feldmeyer D, Egger V, Lubke J, Sakmann B (1999) Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex. J Physiol 521:169–190

    CAS  PubMed  Google Scholar 

  • Feldmeyer D, Lubke J, Silver RA, Sakmann B (2002) Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J Physiol 583:803–822

    Article  Google Scholar 

  • Ferragamo MJ, Oertel D (2002) Octopus cells of the mammalian ventral cochlear nucleus sense the rate of depolarization. J Neurphysiol 87:2262–2270

    Google Scholar 

  • Forslid A, Ingvar M, Rosen I, Ingvar DH (1986) Carbon dioxide narcosis: influence of short-term high concentration carbon dioxide inhalation on EEG and cortical evoked responses in the rat. Acta Physiol Scand 127:281–287

    CAS  PubMed  Google Scholar 

  • George SA, Marks WB (1974) Optic nerve terminal arborizations in the frog: shape and orientation inferred from electrophysiological measurements. Exp Neurol 42:467–482

    Article  CAS  PubMed  Google Scholar 

  • Gruberg ER, Udin SB (1978) Topographic projections between the nucleus isthmi and the tectum of the frog Rana pipiens. J Comp Neurol 179:487–500

    CAS  PubMed  Google Scholar 

  • Guinan JJ Jr, Li RY (1990) Signal processing in brainstem auditory neurons which receive giant endings (calyces of Held) in the medial nucleus of the trapezoid body of the cat. Hear Res 49:321–334

    PubMed  Google Scholar 

  • Gutman AM, Kuras AV (1974) Studies on extracellular PSP of single afferent—the quantum of the EEG in tectum opticum of the frog (in Russian). Biofizika 19:894–898

    Google Scholar 

  • Gutman A, Kuras A, Chusainoviene N (1989) Features of mass extracellular monosynaptic potential of a single afferent in the light of theory of dendrites with N-shaped current-voltage characteristic (in Russian). Biofizika 34:124–129

    CAS  PubMed  Google Scholar 

  • Hounsgaard J, Kiehn O (1993) Calcium spikes and calcium plateaux evoked by differential polarization in dendrites of turtle motoneurones in vitro. J Physiol 468:245–259

    CAS  PubMed  Google Scholar 

  • Hughes TE (1990) A light- and electron-microscopic investigation of the optic tectum of the frog, Rana pipiens, I. The retinal axons. Vis Neurosci 4:499–518

    CAS  PubMed  Google Scholar 

  • Jackson DC, Braun BA (1979) Respiratory control in bullfrogs: cutaneous versus pulmonary response to selective CO2 exposure. J Comp Physiol 129:339–342

    Google Scholar 

  • King JG Jr, Lettvin JY, Gruberg ER (1999) Selective, unilateral, reversible loss of behavioral responses to looming stimuli after injection of tetrodotoxin or cadmium chloride into the frog optic nerve. Brain Res 841:20–26

    Article  CAS  PubMed  Google Scholar 

  • Kuras AV, Chusainoviene NP (1981) Mass extracellular monosynaptic potential of one axon synapses in the frog tectum evoked by electrostimulation of the retina (in Russian). Neirofiziologija 13:643–646

    CAS  Google Scholar 

  • Kuras A, Chusainoviene N (1984) Neuronal firing of the frog tectum evoked by stimulation of separate retinal ganglion cell (in Russian). Neirofiziologija 16:829–835

    CAS  Google Scholar 

  • Kuras AV, Chusainoviene NP (1986) Paired-pulse facilitation of mass extracellular synaptic potentials of separate retinal afferents in the frog tectum (in Russian). Neirofiziologija 18:45–55

    CAS  Google Scholar 

  • Kuras A, Gutmaniene N (1995) Preparation of carbon-fibre microelectrode for extracellular recording of synaptic potentials. J Neurosci Methods 62:207–212

    Article  CAS  PubMed  Google Scholar 

  • Kuras A, Gutmaniene N (1997) Multi-channel metallic electrode for threshold stimulation of frog’s retina. J Neurosci Methods 75:99–102

    Article  CAS  PubMed  Google Scholar 

  • Kuras A, Gutmaniene N (2001) N-cholinergic facilitation of glutamate release from an individual retinotectal fiber in frog. Vis Neurosci 18:549–558

    Article  CAS  PubMed  Google Scholar 

  • Langdon RB, Freeman JA (1987) Pharmacology of retinotectal transmission in the goldfish: effects of nicotinic ligands, strychnine, and kynurenic acid. J Neurosci 7:760–773

    CAS  PubMed  Google Scholar 

  • Lazar G, Szekely G (1967) Golgi studies on the optic center of the frog. J Hirnforschung 9:329–344

    CAS  Google Scholar 

  • Luscher H-R, Ruenzel PW, Henneman E (1983) Effects of impulse frequency, PTP, and temperature on responses elicited in large populations of motoneurons by impulse in single Ia-fibres. J Neurphysiol 50:1045–1058

    CAS  Google Scholar 

  • Manteifel JB (1977) Visual system and behaviour of tailless amphibias (in Russian). Nauka, Moscow

  • Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci U S A 95:5323–5328

    Article  CAS  PubMed  Google Scholar 

  • Martoft L, Stodkilde-Jorgensen H, Forslid A, Pedersen HD, Jorgensen PF (2003) CO2 induced acute respiratory acidosis and brain tissue intracellular pH: a 31P NMR study in swine. Lab Anim 37:241–248

    Article  CAS  PubMed  Google Scholar 

  • Maturana HR, Lettvin JV, McCulloch WS, Pitts WH (1960) Anatomy and physiology of vision in the frog (Rana pipiens). J Gen Physiol 43:129–175

    Article  Google Scholar 

  • Miles R, Wong RK (1986) Excitatory synaptic interactions between CA3 neurons in the guinea-pig hipocampus. J Physiol 373:397–418

    CAS  PubMed  Google Scholar 

  • Mitsuda H, Ishida Y, Yoshikawa H, Ueno S (1988) Effects of high concentration of CO2 on electrocardiograms in the carp, Cyprinus carpio. Comp Biochem Physiol A 91:749–757

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa H, Miyazaki H, Matsumoto N (1997) Principal neuronal organization in the frog optic tectum revealed by a current source density analysis. Vis Neurosci 14:263–275

    CAS  PubMed  Google Scholar 

  • Park YK, Jung SJ, Kwak J, Kim J (2002) Effect of hypoxia on excitatory transmission in the rat substantia gelatinosa neurons. Biochem Biophys Res Commun 295:929–936

    Article  CAS  PubMed  Google Scholar 

  • Potter HD (1969) Structural characteristics of cell and fiber populations in the optic tectum of the frog (Rana catesbeiana). J Comp Neurol 136:203–232

    CAS  PubMed  Google Scholar 

  • Potter HD (1972) Terminal arborizations of retinotectal axons in the bullfrog. J Comp Neurol 144:269–284

    CAS  PubMed  Google Scholar 

  • Scherer WJ, Udin SB (1991) Latency and temporal overlap of visually-elicited contralateral and ipsilateral firing in Xenopus tectum during and after the critical period. Developmental Brain Research 58:129–132

    Article  CAS  PubMed  Google Scholar 

  • Schwindt P, Crill W (1999) Mechanisms underlying burst and regular spiking evoked by dendritic depolarization in layer 5 cortical pyramidal neurons. J Neurphysiol 81:1341–1354

    CAS  Google Scholar 

  • Stern P, Edwards FA, Sakmann B (1992) Fast and slow components of unitary EPSCs on stellate cells elicited by focal stimulation in slices of rat visual cortex. J Physiol 449:247–278

    CAS  PubMed  Google Scholar 

  • Szekely G, Setalo G, Lazar G (1973) Fine structure of the frog’s optic tectum: Optic fiber termination layers. J Hirnforsch 14:189–225

    CAS  PubMed  Google Scholar 

  • Van Deusen EB, Meyer RL (1990) Pharmacologic evidence of NMDA, APB and kainate/quisqualate retinotectal transmission in the isolated whole tectum of goldfish. Brain Res 536:86–96

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Eng. Edvardas Povilonis for help with English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antanas Kuras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuras, A., Baginskas, A. & Batuleviciene, V. Suprathreshold excitation of frog tectal neurons by short spike trains of single retinal ganglion cell. Exp Brain Res 159, 509–518 (2004). https://doi.org/10.1007/s00221-004-1976-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-1976-0

Keywords

Navigation