Skip to main content
Log in

Initiating extension of the lower limbs in subjects with complete spinal cord injury by epidural lumbar cord stimulation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We provide evidence that the human spinal cord is able to respond to external afferent input and to generate a sustained extension of the lower extremities when isolated from brain control. The present study demonstrates that sustained, nonpatterned electrical stimulation of the lumbosacral cord—applied at a frequency in the range of 5–15 Hz and a strength above the thresholds for twitches in the thigh and leg muscles—can initiate and retain lower-limb extension in paraplegic subjects with a long history of complete spinal cord injury. We hypothesize that the induced extension is due to tonic input applied by the epidural stimulation to primary sensory afferents. The induced volleys elicit muscle twitches (posterior root muscle-reflex responses) at short and constant latency times and coactivate the configuration of the lumbosacral interneuronal network, presumably via collaterals of the primary sensory neurons and their connectivity with this network. We speculate that the volleys induced externally to the lumbosacral network at a frequency of 5–15 Hz initiate and retain an “extension pattern generator” organization. Once established, this organization would recruit a larger population of motor units in the hip and ankle extensor muscles as compared to the flexors, resulting in an extension movement of the lower limbs. In the electromyograms of the lower-limb muscle groups, such activity is reflected as a characteristic spatiotemporal pattern of compound motor-unit potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A, B
Fig. 2
Fig. 3
Fig. 4A-C
Fig. 5A-C
Fig. 6A-C
Fig. 7A-D
Fig. 8

Similar content being viewed by others

Abbreviations

C:

Cervical

CMUP:

Compound motor-unit potential

EMG:

Potential

CNS:

Central nervous system

EMG:

Electromyography, electromyographic

H:

Hamstring

L:

Lumbar

MLR:

Mesencephalic locomotor region

PARA:

Paraspinal muscles

Q:

Quadriceps

S:

Sacral

SCI:

Spinal cord injury, spinal cord-injured

SCS:

Spinal cord stimulation

T:

Thoracic

TA:

Tibialis anterior

TS:

Triceps surae

References

  • Barolat G, Singh-Sahni K, Staas WE et al. (1995) Epidural spinal cord stimulation in the management of spasms in spinal cord injury. A prospective study. Stereotact Funct Neurosurg 64:153–164

    CAS  PubMed  Google Scholar 

  • Beric A (1988) Stability of lumbosacral somatosensory evoked potentials in a long-term follow-up. Muscle Nerve 11:621–626

    CAS  PubMed  Google Scholar 

  • Bizzi E, Giszter SF, Loeb E, Mussa-Ivaldi FA, Saltiel P (1995) Modular organization of motor behavior in the frog’s spinal cord. Trends Neurosci 18:442–446

    Article  CAS  PubMed  Google Scholar 

  • Brooke JD, McIlroy WE (1985) Locomotor limb synergism through short latency afferent links. Electroencephalogr Clin Neurophysiol 60:39–45

    Article  CAS  PubMed  Google Scholar 

  • Brown TG (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc B 84:308–319

    Google Scholar 

  • Coburn B (1985) A theoretical study of epidural electrical stimulation of the spinal cord. II. Effects on long myelinated fibers. IEEE Trans Biomed Eng 32:978–986

    CAS  PubMed  Google Scholar 

  • De Leon RD, Hodgson JA, Roy RR, Edgerton VR (1998) Full weight bearing hind limb standing following stand training in the adult spinal cat. J Neurophysiol 80:83–91

    CAS  PubMed  Google Scholar 

  • Dietz V, Wirz M, Colombo G, Curt A (1997) Locomotor capacity and recovery of spinal cord function in paraplegic patients: a clinical and electrophysiological evaluation. Electroencephalogr Clin Neurophysiol 109:140–153

    Article  Google Scholar 

  • Dietz V, Muller R, Colombo G (2002) Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 125:2626–2634

    Article  PubMed  Google Scholar 

  • Dimitrijevic MR (1994) Motor control in chronic spinal cord injury patients. Scand J Rehabil Med (Suppl) 30:53–62

    Google Scholar 

  • Dimitrijevic MR (1998) Chronic spinal cord stimulation for spasticity. In: Gindelberg PL, Tasker RR (eds) Textbook for stereotactic and functional neurosurgery. McGraw-Hill, New York, pp 1267–1273

  • Dimitrijevic MR (2001) What does the human brain tell to the spinal cord to generate and control standing and walking? World Congress on Neuroinformatics, Vienna 2001. Abstracts 53–54. ISBN 3–901608–20–6

  • Dimitrijevic MR, Nathan PW (1967) Studies of spasticity in man. 1. Some features of spasticity. Brain 90:1–30

    CAS  PubMed  Google Scholar 

  • Dimitrijevic MR, Faganel J, Gregoric M, Nathan M, Trontelj JK (1972) Habituation: effects of regular and stochastic stimulation. J Neurol Neurosurg Psychiatry 35:234–242

    CAS  PubMed  Google Scholar 

  • Dimitrijevic MR, Faganel J, Sharkey PC, Sherwood AM (1980) Study of sensation and muscle twitch responses to spinal cord stimulation. Int Rehabil Med 2:76–81

    CAS  PubMed  Google Scholar 

  • Dimitrijevic MR, Prevec TS, Sherwood AM (1983) Somatosensory perception and cortical evoked potentials in established paraplegia. J Neurol Sci 60:253–265

    Article  CAS  PubMed  Google Scholar 

  • Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998a) Effect of reduced afferent input on lumbar CPG in spinal cord injury subjects. Soc Neurosci Abstr 24:654.23

    Google Scholar 

  • Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998b) Evidence for a spinal central pattern generator in humans. In: Kien O, Harris-Warrick RM, Jordan L, Hultborn H, Kudo N (eds) Neuronal mechanism for generating locomotor activity. Ann NY Acad Sci 860:360–376

    CAS  PubMed  Google Scholar 

  • Dimitrijevic MR, Minassian K, Murg M et al. (2001) Study of locomotor capabilities induced by spinal cord stimulation (SCS) of the human lumbar cord isolated from the brain control by post traumatic spinal cord injury. Soc Neurosci 27:935.6

    Google Scholar 

  • Dobkin BH, Harkema S, Requejo P, Edgerton VR (1995) Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury. J Neurol Rehabil 9(4):183–190

    CAS  PubMed  Google Scholar 

  • Gerasimenko Y, McKay B, Sherwood A, Dimitrijevic MR (1996) Stepping movements in paraplegic patients induced by spinal cord stimulation. Soc Neurosci Abstr 22:1372

    Google Scholar 

  • Giszter SF, Mussa-Ivaldi FA, Bizzi E (1993) Convergent force fields organized in the frog’s spinal cord. J Neurosci 13(2):467–491

    CAS  PubMed  Google Scholar 

  • Grillner S, Zangger P (1979) On the central generation of locomotion in the low spinal cat. Exp Brain Res 34:241–261

    CAS  PubMed  Google Scholar 

  • Gurfinkel VS, Levik YuS, Kazennikov OV, Selionov VA (1998) Locomotor-like movements evoked by leg muscle vibration in humans. Eur J Neurosci 10:1608–1612

    Article  CAS  PubMed  Google Scholar 

  • Guru K, Mailis A, Ashby P, Vanderlinden G (1987) Postsynaptic potentials in motoneurons caused by spinal cord stimulation in humans. Electroencephalogr Clin Neurophysiol 66:275–280

    Google Scholar 

  • Harkema SJ (2001) Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking. Prog Clin Neurosci 7(5):455–468

    CAS  Google Scholar 

  • Harkema SJ, Hurley SL, Patel UK et al. (1997) Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol 77:797–811

    CAS  PubMed  Google Scholar 

  • He J, Barolat G, Holsheimer J, Struijk JJ (1994) Perception treshold and electrode position for spinal cord stimulation. Pain 59:55–63

    Google Scholar 

  • Hultborn H (2001) State-dependent modulation of sensory feedback. J Physiol 533.1:5–13

    Google Scholar 

  • Hunter JP, Ashby P (1994) Segmental effects of epidural spinal cord stimulation in humans. J Physiol 474:407–419

    Google Scholar 

  • Iwahara T, Atsuta Y, Garcia-Rill E, Skinner RD (1991) Spinal cord stimulation induced locomotion in the adult cat. Brain Res Bull 28:99–105

    Article  Google Scholar 

  • Jankowska E (2001) Spinal interneuronal system: identification, multifunctional character and reconfigurations in mammals. J Physiol (Lond) 533(1):31–40

    Google Scholar 

  • Jilge B, Minassian K, Dimitrijevic MR (2001) Electrical stimulation of the human lumbar cord can elicit standing parallel extension of paralyzed lower limbs after spinal cord injury. World Congress on Neuroinformatics, Vienna 2001. Abstracts 63–64 (ISBN 3–901608–20–6)

  • Jilge B, Minassian K, Rattay F, Dimitrijevic MR (2002) Tonic and rhythmical motor-unit activity of the cord induced by epidural stimulation can alter posterior roots muscle reflex responses. Proc IFESS 2002 Conference, Ljubljana, Slovenia 164–166

  • Jordan LM, Pratt CA, Menzies JE (1979) Locomotion evoked by brain stem stimulation: occurrence without phasic segmental afferent input. Brain Res 177:204–207

    CAS  PubMed  Google Scholar 

  • Kameyama T et al. (1996) Morphologic features of the normal human cadaveric spinal cord. Spine 21:1285–1290

    Article  CAS  PubMed  Google Scholar 

  • Kazennikov OV, Shik ML, Yakovleva GV (1983) Stepping elicited by stimulation of the dorsolateral funiculus in the cat spinal cord. Bull Exp Biol Med 96(8):8–10

    CAS  Google Scholar 

  • Kuhn R (1950) Functional capacity of the isolated human spinal cord. Brain 1:1–51

    Google Scholar 

  • Lang J, Geisel U (1983) Lumbosacral part of the dural sac and the topography of its contents. Morphol Med 3:27–46 (in German)

    CAS  PubMed  Google Scholar 

  • Lehmkuhl D, Dimitrijevic MR, Renoul E (1984) Electrophysiological characteristics of lumbosacral evoked potentials in subjects with established spinal cord injury. Electroencephalogr Clin Neurophysiol 59:142–155

    Article  CAS  PubMed  Google Scholar 

  • Maccabee PJ, Lipitz ME, Desudchit T et al. (1996) A new method using neuromagnetic stimulation to measure conduction time within the cauda equina. Electroencephalogr Clin Neurophysiol 101:153–166

    Article  CAS  PubMed  Google Scholar 

  • Macpherson JM, Deliagina TG, Orlovsky GN (1999) Control of body orientation and equilibrium in vertebrates. In: Stein PSG, Grillner S, Selverston AI, Stuart DG (eds) Neurons, networks and motor behavior. MIT Press, Cambridge, MA, pp 257–267

  • Minassian K, Pinter MM, Murg M et al. (2001a) Effective spinal cord stimulation (SCS) train for evoking stepping locomotor movement of paralyzed human lower limbs due to SCI elicits a late response additionally to the early monosynaptic response. Soc Neurosci Abstr 27:935.12

    Google Scholar 

  • Minassian K, Rattay F, Dimitrijevic MR (2001b) Features of the reflex responses of the human lumbar cord isolated from the brain but during externally controlled locomotor activity. World Congress on Neuroinformatics, Vienna 2001. Abstracts 55–56 (ISBN 3–901608–20–6)

  • Minassian K, Rattay F, Dimitrijevic MR (2001c) A computer simulation and electrophysiological methods to identify the primary stimulated spinal cord structures with epidural electrodes. World Congress on Neuroinformatics, Vienna 2001. Abstracts 64–65 (ISBN 3–901608–20–6)

  • Minassian K, Jilge B, Rattay F et al. (2002) Effective spinal cord stimulation (SCS) for evoking stepping movement of paralyzed human lower limbs: study of posterior root muscle reflex responses. Proc IFESS 2002 Conference, Ljubljana, Slovenia 167–169

  • Mori S (1987) Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats. Prog Neurobiol 28:161–195

    CAS  PubMed  Google Scholar 

  • Mori S, Kawahara K, Sakamoto T, Aoki M, Tomiyama T (1982) Setting and resetting of level of postural muscle tone in decerebrate cat by stimulation of brain stem. J Neurophysiol 48(3):737–748

    CAS  PubMed  Google Scholar 

  • Murg M, Binder H, Dimitrijevic MR (2000) Epidural electrical stimulation of posterior structures of the human lumbar spinal cord. 1. Muscle twitches—a functional method to define the site of stimulation. Spinal Cord 38:394–402

    Article  CAS  PubMed  Google Scholar 

  • Mushahwar VK, Collins DF, Prochazka A (2000) Spinal cord microstimulation generates functional limb movements in chronically implanted cats. Exp Neurol 163(2):422–429

    Article  CAS  PubMed  Google Scholar 

  • Mushahwar VK, Gillard DM, Gauthier MJA, Prochazka A (2002) Intraspinal microstimulation generates locomotor-like and feedback-controlled movements. IEEE Trans Rehab Eng 10(1):68–81

    Article  Google Scholar 

  • Pearson KG, Collins DF (1993) Reversal of the influence of group Ib afferents from plantaris on activity in medial gastrocnemius muscle during locomotor activity. J Neurophysiol 70:1009–1017

    CAS  PubMed  Google Scholar 

  • Pinter MM, Dimitrijevic MR, Dimitrijevic MM (1998) Effect of motor task on externally induced stepping movement in spinal cord subjects. Soc Neurosci Abstr 24:831.1

    Google Scholar 

  • Pinter MM, Gerstenbrand F, Dimitrijevic MR (2000) Epidural electrical stimulation of posterior structures of the human lumbosacral cord. 3. Control of spasticity. Spinal Cord 38:524–531

    Article  CAS  PubMed  Google Scholar 

  • Pratt CA, Fung J, Macpherson JM (1994) Stance control in the chronic spinal cat. J Neurophysiol 71:1981–1985

    CAS  PubMed  Google Scholar 

  • Rattay F, Minassian K, Dimitrijevic MR (2000) Epidural electrical stimulation of posterior structures of the human lumbosacral cord. 2. Quantitative analysis by computer modeling. Spinal Cord 38:473–489

    Article  CAS  PubMed  Google Scholar 

  • Richardson RR, McLone DG (1978) Percutaneous epidural neurostimulation for paraplegic spasticity. Surg Neurol 9:153–155

    CAS  PubMed  Google Scholar 

  • Riddoch G (1917) The reflex functions of the completely divided spinal cord in man compared with those associated with less severe lesions. Brain 40:264–402

    Google Scholar 

  • Roaf HE, Sherrington CS (1910) Further remarks on the spinal mammalian preparation. Q J Physiol 3:209–211

    Google Scholar 

  • Rosenfeld JE, McKay WB, Halter JA, Pollo F, Dimitrijevic MR (1995) Evidence of a pattern generator in paralyzed subjects with spinal cord injury during spinal cord stimulation. Soc Neurosci Abstr 21:688

    Google Scholar 

  • Sherwood AM, McKay WB, Dimitrijevic MR (1996) Motor control after spinal cord injury: assessment using surface EMG. Muscle Nerve 19:966–979

    Article  CAS  PubMed  Google Scholar 

  • Shik ML (1997) Recognizing propriospinal and reticulospinal systems of initiation of stepping. Mot Control 1:310–313

    Google Scholar 

  • Shik ML, Orlovsky GN (1976) Neurophysiology of locomotor automatism. Physiol Rev 56:465–501

    CAS  PubMed  Google Scholar 

  • Shik ML, Severin FV, Orlovsky GN (1966) Control of walking and running by means of electrical stimulation of the mid-brain. Biophysics 11:756–765

    Google Scholar 

  • Struijk JJ, Holsheimer J, Boom HB (1993) Excitation of dorsal root fibers in spinal cord stimulation: a theoretical study. IEEE Trans Biomed Eng 40:632–639

    Article  CAS  PubMed  Google Scholar 

  • Tresch MC, Bizzi E (1999) Responses to spinal microstimulation in the chronically spinalized rat and their relationship to spinal systems activated by low threshold cutaneous stimulation. Exp Brain Res 129(3):401–416

    CAS  PubMed  Google Scholar 

  • Troni W, Bianco C, Moja MC, Dotta M (1996) Improved methodology for lumbosacral nerve root stimulation. Muscle Nerve 19:595–604

    Article  CAS  PubMed  Google Scholar 

  • Walsh FM (1919) On the genesis and physiological significance of spasticity and the disorders of motor innervation with a consideration of the functional relationship to the pyramidal tract. Brain 42:1–28

    Google Scholar 

Download references

Acknowledgements

Special thanks are due to Ms. Auer, Ms. Preinfalk, and Ms. Alesch for their excellent technical support. This study was supported by the Austrian Science Fund (FWF), research project P15469; the Austrian Ministry of Transport, Innovation and Technology; and a grant from the Kent Waldrep National Paralysis Foundation in Addison, Texas, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Dimitrijevic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jilge, B., Minassian, K., Rattay, F. et al. Initiating extension of the lower limbs in subjects with complete spinal cord injury by epidural lumbar cord stimulation. Exp Brain Res 154, 308–326 (2004). https://doi.org/10.1007/s00221-003-1666-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1666-3

Keywords

Navigation