Skip to main content
Log in

Regulation of oligodendrocyte development

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Oligodendrocytes are the cells responsible for the formation of myelin in the central nervous system. Recent studies demonstrated that cells of the oligodendrocyte lineage initially arise in distinct regions of the ventricular zone during early development. These cells or their progeny migrate to developing white matter tracts where they undergo the majority of their proliferation and subsequently differentiate into myelinating cells. Oligodendrocyte-precursor cell proliferation is regulated by a number of distinct growth factors that act at distinct stages in the lineage and the final number of oligodendrocytes in any region of the CNS is regulated by local influences. A density-dependent feedback inhibition of proliferation reduces the responsiveness of the cells to their growth factors and the final matching of oligodendrocyte and axon number is accomplished through the local regulation of cell death. In this review, we discuss the major factors that regulate three distinct stages in the development of the oligodendrocyte lineage: The initial induction of oligodendrocyte progenitors, the regulation of expansion and dispersion of the committed precursor cell population., and the final regulation of oligodendrocyte precursor number through the local inhibition of oligodendrocyte precursor proliferation and cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Armstrong R., Harvath L., and Dubois-Dalcq M. (1991) Astrocytes and O-2A progenitors migrate toward distinct molecules in a microchemotaxis chamber.Ann. NY Acad. Sci. 633, 520–522.

    Article  PubMed  CAS  Google Scholar 

  • Bansal R., et al. (1996) Regulation of FGF receptors in the oligodendrocyte lineage.Mol. Cell. Neurosci. 7, 263–275.

    Article  PubMed  CAS  Google Scholar 

  • Bansal R., Stefansson K., and Pfeiffer S. E. (1992) Proligodendroblast antigen (POA), a developmental antigen expressed by A007/O4-positive oligodendrocyte progenitors prior to the appearance of sulfatide and galactocerebroside.J. Neurochem. 58, 2221–2229.

    Article  PubMed  CAS  Google Scholar 

  • Barres B. A. and Raff M. C. (1994) Control of oligodendrocyte number in the developing rat optic nerve.Neuron 12, 935–942.

    Article  PubMed  CAS  Google Scholar 

  • Barres B. A., et al. (1992) Cell death and control of cell survival in the oligodendrocyte lineage.Cell 70, 31–46.

    Article  PubMed  CAS  Google Scholar 

  • Barres B. A., et al. (1993) Multiple extracellular signals are required for long-term oligodendrocyte survival.Development 118, 283–295.

    PubMed  CAS  Google Scholar 

  • Barres B. A., et al. (1994) A crucial role for neurotrophin-3 in oligodendrocyte development.Nature 367, 371–375.

    Article  PubMed  CAS  Google Scholar 

  • Barres B. A., Lazar M. A., and Raff M. C. (1994) A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development.Development 120, 1097–1108.

    PubMed  CAS  Google Scholar 

  • Bartsch U., et al. (1994) Tenascin demarcates the boundary between the myelinated and non-myelinated part of retinal ganglion cell axons in the developing and adult mouse.J. Neurosci. 14, 4756–4768.

    PubMed  CAS  Google Scholar 

  • Bogler O., et al. (1990) Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells.Proc. Natl. Acad. Sci. USA 87, 6368–6372.

    Article  PubMed  CAS  Google Scholar 

  • Bunge R. P. (1968) Glial cells and the central myelin sheath.Physiol. Rev. 48, 197–251.

    PubMed  CAS  Google Scholar 

  • Butt A. M. and Ransom B. R. (1989) Visualization of oligodendrocytes and astrocytes in the intact rat optic nerve by intracellular injection of lucifer yellow and horseradish peroxidase.Glia 2, 470–475.

    Article  PubMed  CAS  Google Scholar 

  • Cameron-Currey P. and LeDouarin N. M. (1995) Oligodendrocyte precursors originate from both the dorsal and ventral parts of the spinal cord.Neuron 15, 1299–1310.

    Article  Google Scholar 

  • Campagnoni A. T. (1995) Molecular biology of myelination, inNeuroglia. (Kettenmann H and Ransom, B. R. eds.) Oxford University Press, New York, pp. 555–571.

    Google Scholar 

  • Campagnoni A. T. and Macklin W. B. (1988) Cellular and molecular aspects of myelin protein gene expression.Mol. Neurobiol. 2, 41–89.

    Article  PubMed  CAS  Google Scholar 

  • Davis A. A. and Temple S. (1994) A self renewing multipotential stem cell in embryonic rat cerebral cortex.Nature 372, 263–266.

    Article  PubMed  CAS  Google Scholar 

  • Echelard Y., et al. (1993) Sonic hedgehog, a member of a family of putative signaling molecules is implicated in the regulation of CNS polarity.Cell 75, 1417–1430.

    Article  PubMed  CAS  Google Scholar 

  • ffrench-Constant C., et al. (1988) Evidence that migratory oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells are kept out of the rat retina by a barrier at the eye-end of the optic nerve.J. Neurocytol. 17, 13–25.

    Article  PubMed  CAS  Google Scholar 

  • Fok-Seang J. and Miller R. H. (1994) Distribution and differentiation of A2B5+ glial precursors in the developing rat spinal cord.J. Neurosci. Res. 37, 219–235.

    Article  PubMed  CAS  Google Scholar 

  • Gard A. L. and Pfeiffer S. E. (1990) Two proliferative stages of the oligodendrocyte lineage (A2B5+O4-and 04+GalC-) under different mitogenic control.Neuron 5, 615–625.

    Article  PubMed  CAS  Google Scholar 

  • Gard A. L. and Pfeiffer S. E. (1993) Glial cell mitogens bFGF and PDGF differentially regulate development of O4+ GalC- oligodendrocyte progenitors.Develop. Biol. 159, 618–630.

    Article  PubMed  CAS  Google Scholar 

  • Gard A. L., Williams W. C., and Burell M. R. (1995) Oligodendroblasts distinguished from O-2A progenitors by surface phenotype (O4+ GalC+) and response to cytokines using signal transducer LIFRβ.Devel. Biol. 167, 596–608.

    Article  CAS  Google Scholar 

  • Gilmore S. A. (1971) Neuroglial populations in the spinal white matter of neonatal and early postnatal rats: an autoradiographic study of numbers of neuroglia and changes in their proliferative activity.Anat. Rec. 171, 283–292.

    Article  PubMed  CAS  Google Scholar 

  • Goyne G. E., et al. (1994) Oligodendrocyte precursor quantiation and localization in perinatal brain using a retrospective bioassay.J. Neurosci. 14, 5365–5372.

    Google Scholar 

  • Hatten M. E. (1990) Riding the glial monorail: a common mechanism for glial guided migration in different regions of the developing mammalian brain.Trends Neurosci. 13, 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Hughes S. M., et al. (1988) Ciliary neurotrophic factor induces type-2 astrocyte differentiation in culture.Nature 335, 70–73.

    Article  PubMed  CAS  Google Scholar 

  • Ibarrola N., et al. (1996) Evidence for the existence of at least two timing mechanisms that contribute to oligodendrocyte generation in vitro.Develop. Biol. 180, 1–21.

    Article  PubMed  CAS  Google Scholar 

  • Jessell T. M. and Dodd J. (1990) Floor plate-derived signals and the control of neural cell pattern in vertebrates.Harvey Lect. 86, 87–128.

    PubMed  Google Scholar 

  • Kiernan B. W. and ffrech-Constant C. (1993) Oligo-dendrocyte precursor (O-2A progenitor cell) migration: a model system for the study of cell migration in the developing central nervous system.Development (Suppl.) 219–225.

    Google Scholar 

  • Kiernan B. W., et al. (1996) Tenascin-C inhibits oligodendrocyte precursor cell migration by both adhesion-dependent and adhesion-independent mechanisms.Mol. Cell. Neurosci. 7, 322–335.

    Article  PubMed  CAS  Google Scholar 

  • Lachapelle F., et al. (1984) Transplantation of CNS fragments into the brain of shiverer mutant mice. Extensive myelination by implanted oligodendrocytes. 1. Immunohistochemical studies.Dev. Neuroscience 6, 325–334.

    CAS  Google Scholar 

  • Leber S. M. and Sanes J. R. (1991) Lineage analysis with a recombinant retrovirus: application to chick spinal motor neurons.Adv. Neurol. 56, 27–36.

    PubMed  CAS  Google Scholar 

  • Leber S. M., Breedlove S. M., and Sanes J. R. (1990) Lineage, arrangement, and death of clonally related motoneurons in chick spinal cord.J. Neurosci. 10, 2451–2462.

    PubMed  CAS  Google Scholar 

  • Lillien L. E., Sendtner M., and Raff M. C. (1990) Extracellular matrix-associated molecules collaborate with ciliary neurotrophic factor to induce type-2 astrocyte development.J. Cell Biol. 111, 635–644.

    Article  PubMed  CAS  Google Scholar 

  • Louis J. C., Muir D., and Varon S. (1992) Autocrine inhibition of mitotic activity in cultured oligodendrocyte-type-2 astrocyte (O-2A) precurosr cells.Glia 6, 30–38.

    Article  PubMed  CAS  Google Scholar 

  • Maier C. E. and Miller R. H. (1997) Notochord is essential for oligodendrocyte development inXenopus spinal cord.J. Neurosci. Res. 47, 361–371.

    Article  PubMed  CAS  Google Scholar 

  • Mayer M., Bogler O., and Noble M. (1993) The inhibition of oligodendrocyte differentiation of O-2A progenitors caused by bFGF is overridden by astrocytes.Glia 8, 12–19.

    Article  PubMed  CAS  Google Scholar 

  • McKinnon R. D., et al. (1990) FGF modulates the PDGF-driven pathway of oligodendrocyte development.Neuron 5, 603–614.

    Article  PubMed  CAS  Google Scholar 

  • McKinnon R. D., et al. (1993) A role for TGF-B in oligodendrocyte differentiation.J. Cell Biol. 121, 1397–1407.

    Article  PubMed  CAS  Google Scholar 

  • Milner R. and ffrench-Constant C. (1994) A developmental analysis of oligodendroglial integrins in primary cells: changes in αv-associated β subunits during differentiation.Development 120, 3497–3506.

    PubMed  CAS  Google Scholar 

  • Noble M. and Wolswijk G. (1992) Development and regeneration in the O-2A lineage: studies in vitro and in vivo.J. Neuroimmunol. 40, 287–293.

    Article  PubMed  CAS  Google Scholar 

  • Noble M., et al. (1988) Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell.Nature 333, 560–562.

    Article  PubMed  CAS  Google Scholar 

  • Noll E. and Miller R. H. (1993) Oligodendrocyte precursors originate at the ventral ventricular zone dorsal to the ventral midline in the embryonic rat spinal cord.Development 118, 563–573.

    PubMed  CAS  Google Scholar 

  • Noll E. and Miller R. H. (1994) Regulation of oligo-dendrocyte differentiation: a role for retinoic acid in the spinal cord.Development 120, 649–660.

    PubMed  CAS  Google Scholar 

  • Ono K., et al. (1977) Early development of the oligodendrocyte in the embryonic chick metencephalon.J. Neurosci. Res. 48, 1–14.

    Google Scholar 

  • Ono K., et al. (1995) Early development and dispersal of oligodendrocyte precursors in the embyonic chick spinal cord.Development 121, 1743–1754.

    PubMed  CAS  Google Scholar 

  • Orentas D. M. and Miller R. H. (1996) The origin of spinal cord oligodendrocytes is dependent on local influences from the notochord.Devel. Biol. 177, 43–53.

    Article  CAS  Google Scholar 

  • Oumesmar B. N., Vignais L., and Baron-Van Evercooren A. (1997) Developmental expression of platelet-derived growth factor a—receptor in neurons and glial cells of the mouse CNS.J. Neurosci. 17, 125–139.

    PubMed  CAS  Google Scholar 

  • Payne H. R. and Lemmon V. (1993) Glial cells of O-2A lineage bind preferentially to N-cadherin and develop distinct morphologies.Devel. Biol. 159, 595–607.

    Article  CAS  Google Scholar 

  • Peters A., Palay S. L., and Webster D. (1990)The Fine Structure of The Nervous System. Saunders, Philadelphia.

    Google Scholar 

  • Pfeiffer S. E., Warrington A. E., and Bansal R. (1993) The oligodendrocyte and its many cellular processes.Trends Cell Biol. 3, 191–197.

    Article  PubMed  CAS  Google Scholar 

  • Prineas J. W. (1985) The neuropathology of multiple sclerosis, inHandbook of Clinical Neurology, (Koestier J. C.) ed. Elsevier, Amsterdam.

    Google Scholar 

  • Pringle N. P. and Richardson W. D. (1993) A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage.Development 117, 525–533.

    PubMed  CAS  Google Scholar 

  • Pringle N. P., et al. (1992) PDGF receptors in the rat CNS: during late neurogenesis, PDGF alpha-receptor expression appears to be restricted to glial cells of the oligodendrocyte lineage.Development 115, 535–551.

    PubMed  CAS  Google Scholar 

  • Pringle N. P., et al. (1996) Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage by ventral midline cells and sonic hedgehog.Devel. Biol. 177, 30–42.

    Article  CAS  Google Scholar 

  • Qian X., et al. (1997) FGF2 concentration regulates the generation of neurons and glia from multipotential cortical stem cells.Neuron 18, 81–93.

    Article  PubMed  CAS  Google Scholar 

  • Raff M. C. (1989) Glial cell diversification in the rat optic nerve.Science 243, 1450–1455.

    Article  PubMed  CAS  Google Scholar 

  • Raff M. C., Abney E. R., and Fox-Seang J. (1985) Reconstitution of a developmental clock in vitro: a critical role for astrocytes in the timing of oligodendrocyte differentiation.Cell 42, 61–69.

    Article  PubMed  CAS  Google Scholar 

  • Raff M. C., et al. (1978) Galactocerebroside is a specific cell surface antigenic marker for oligodendrocytes in culture.Nature 274, 813–816.

    PubMed  CAS  Google Scholar 

  • Raff M. C., et al. (1988) Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture.Nature 333, 562–565.

    Article  PubMed  CAS  Google Scholar 

  • Raff M. C., et al. (1990) An analysis of the cell-cell interactions that control the proliferation and differentiation of a bipotential glial progenitor cell in culture.Cold Spring Harbor Symposium Quantitative Biology 55, 235–238.

    CAS  Google Scholar 

  • Raff M. C., Williams B. P., and Miller R. H. (1984) The in vitro differentiation of a bipotential glial progenitor cell.EMBO J. 3, 1857–1864.

    PubMed  CAS  Google Scholar 

  • Raine C. S. (1984) Biology of disease. The analysis of autoimmune demyelination: its impact upon multiple sclerosis.Lab. Invest. 50, 608–635.

    PubMed  CAS  Google Scholar 

  • Rakic P. (1971) Neuron-glial relationship during granule cell migration in the developing cerebellar cortex. A Golgi and electronmicroscopic study in Maccacus rhesus.J. Comp. Neurol. 141, 238–312.

    Article  Google Scholar 

  • Rakic P. (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex.J. Comp. Neurol. 145, 61–84.

    Article  PubMed  CAS  Google Scholar 

  • Richardson W. D., et al. (1988) A role for platelet-derived growth factor in normal gliogenesis in the central nervous system.Cell 53, 309–319.

    Article  PubMed  CAS  Google Scholar 

  • Robinson S., and Miller R. H. (1996) Environmental enhancement of growth factor mediated oligodendrocyte precursor proliferation.Mol. Cell. Neurosci. 8, 38–52.

    Article  PubMed  CAS  Google Scholar 

  • Roelink H., et al. (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord.Cell 76, 761–775.

    Article  PubMed  CAS  Google Scholar 

  • Roelink H., et al. (1995) Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis.Cell 81, 445–455.

    Article  PubMed  CAS  Google Scholar 

  • Shah N. M., et al. (1994) Glial growth factor restricts mammalian neural crest stem cells to a glial fate.Cell 77, 349–360.

    Article  PubMed  CAS  Google Scholar 

  • Skoff R. P., Price D., and Stocks A. (1976a) Electron microscope autoradiographic studies of gliogenesis in rat optic nerve. 1 Cell proliferation.J. Comp. Neurol. 169, 291–312.

    Article  PubMed  CAS  Google Scholar 

  • Skoff R., Price D., and Stocks A. (1976b) Electron microscope autoradiographic studies of gliogenesis in rat optic nerve. 11 Time of origin.J. Comp. Neurol. 169, 313–333.

    Article  PubMed  CAS  Google Scholar 

  • Small R. K., Riddle P. and Noble M. (1987) Evidence for migration of oligodendrocyte—type-2 astrocyte progenitor cells into the developing rat optic nerve.Nature 328, 155–157.

    Article  PubMed  CAS  Google Scholar 

  • Temple S. and Raff M. C. (1986) Clonal analysis of oligodendrocyte development in culture: evidence for a developmental clock that counts cell divisions.Cell 44, 773–779.

    Article  PubMed  CAS  Google Scholar 

  • Timsit S., et al. (1995) Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression.J. Neurosci. 15, 1012–1024.

    PubMed  CAS  Google Scholar 

  • Trapp B. D. (1990) Myelin-associated glycoprotein: location and potential functions.Ann. NY Acad. Sci. 605, 29–43.

    Article  PubMed  CAS  Google Scholar 

  • van Straaten H. W., et al. (1988) Effect of the notochord on the differentiation of a floor plate area in the neural tube of the chick embryo.Anat. Embryol. Berl. 177, 317–324.

    Article  PubMed  Google Scholar 

  • van Straaten H. W., et al. (1989) Effect of the notochord on proliferation and differentiation in the neural tube of the chick embryo.Development 107, 793–803.

    PubMed  Google Scholar 

  • Wang C., et al. (1996) Functional N-methyl-D-aspartate receptors in 0-2A glial precursor cells: a critical role in regulating polysialic acid-neural cell adhesion molecule expression and cell migration.J. Cell Biol. 135, 1565–1581.

    Article  PubMed  CAS  Google Scholar 

  • Wang C., Rougon G., and Kiss J. Z. (1994) Requirement of polysialic acid for the migration of the O-2A glial progenitor from neurohypophyseal explants.J. Neurosci. 14, 4446–4458.

    PubMed  CAS  Google Scholar 

  • Warf B. C., Fok-Seang J., and Miller R. H. (1991) Evidence for the ventral origin of oligodendrocyte precursors in the rat spinal cord.J. Neurosci. 11, 2477–2488.

    PubMed  CAS  Google Scholar 

  • Warrington A. E. and Pfeiffer S. E. (1992) Proliferation and differentiation of O4+ oligodendrocytes in postnatal rat cerebellum: analysis in unfixed tissue slices using anti-glycolipid antibodies.J. Neurosci. Res. 33, 338–353.

    Article  PubMed  CAS  Google Scholar 

  • Warrington A. E., Barbarese E., and Pfeiffer S. E. (1993) Differential myelinogenic capacity of specific stages of the oligodendrocyte upon transplantation into hypomyelinating hosts.J. Neurosci. Res. 34, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Wieser R. J., et al. (1990) Growth control in mammalian cells by cell-cell contacts.Environ. Health Persp. 88, 251–253.

    Article  CAS  Google Scholar 

  • Williams B. P., Read J., and Price J. (1991) The generation of neurons and oligodendrocytes from a common precursor cell.Neuron 7, 685–693.

    Article  PubMed  CAS  Google Scholar 

  • Wolswijk G. and Noble M. (1989) Identification of an adult-specific glial progenitor cell.Development 105, 387–400.

    PubMed  CAS  Google Scholar 

  • Wolswijk G., Riddle P. N., and Noble M. (1991) Platelet-derived growth factor is mitogenic for O-2A adult progenitor cells.Glia 4, 495–503.

    Article  PubMed  CAS  Google Scholar 

  • Yeh H. J., et al. (1991) PDGF A-chain gene is expressed by mammalian neurons during development and in maturity.Cell 64, 209–216.

    Article  PubMed  CAS  Google Scholar 

  • Yu W. P., et al. (1994) Embryonic expression of myelin genes: evidence for a focal source of oligodendrocyte precursors in the ventricular zone of the neural tube.Neuron 12, 1353–1362.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H. and Miller R. H. (1996) Density-dependent feedback inhibition of oligodendrocyte precursor expansion.J. Neurosci. 16, 6886–6895.

    PubMed  CAS  Google Scholar 

  • Zhang H., and Miller R. H. (1995) Asynchronous differentiation of clonally related spinal cord oligodendrocytes.Mol. Cell. Neurosci. 6, 16–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orentas, D.M., Miller, R.H. Regulation of oligodendrocyte development. Mol Neurobiol 18, 247–259 (1998). https://doi.org/10.1007/BF02741302

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02741302

Index Entries

Navigation