Skip to main content
Log in

Principles of neural cell migration

  • Multi-author Review
  • Published:
Experientia Aims and scope Submit manuscript

Summary

A basic property of immature neurons is their ability to change position from the place of their final mitotic division in proliferative centers of the developing brain to the specific positions they will occupy in a given structure of the adult nervous system. Proper acquisition of neuron position, attained through the process of active migration, ultimately affects a cell's morphology, synaptic connectivity and function. Although various classes of neurons may use different molecular cues to guide their migration to distant structures, a surface-mediated interaction between neighboring cells is considered essential for all types of migration. Disturbance of this cell-cell interaction may be important in several congenital and/or acquired brain abnormalities. The present article considers the basic mechanisms and principles of neuronal cell migration in the mammalian central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvarez-Buylla, A., Mechanism of neurogenesis in adult avian brain. Experientia46 (1990) 948–955.

    Article  CAS  PubMed  Google Scholar 

  2. Alvarez-Buylla, A., and Nottebohm, F., Migration of young neurons in adult avian brain. Nature335 (1988) 353–354.

    Article  CAS  PubMed  Google Scholar 

  3. Barth, P.G., Disorders of neuronal migration. J. neurol. Sci.14 (1987) 1–16.

    Article  CAS  Google Scholar 

  4. Caviness, V.S., Misson, J.-P., and Gadisseux, J.-F., Abnormal neuronal migrational patterns and disorders of neocortical development, in: From Reading to Neuron, pp. 405–442. Ed. A.M. Galaburda. MIT Press, Cambridge 1989.

    Google Scholar 

  5. Caviness, V.S. Jr, and Rakic, P., Mechanisms of cortical development: a view from mutations in mice. A. Rev. Neurosci.1 (1978) 297–326.

    Article  Google Scholar 

  6. Choi, B.H., Glial fibrillary acidic protein in radial glial cells of early human fetal cerebrum: A light and electron microscopic immunoper-oxidase study. J. Neuropath. exp. Neurol.45 (1986) 408–418.

    Article  CAS  PubMed  Google Scholar 

  7. Creutzfelt, O., Generality of the functional structure of the neocortex. Naturwissenschaften64 (1977) 507–517.

    Article  Google Scholar 

  8. Eckenhoff, M.F., and Rakic, P., Radial organization of the hippocampal dentate gyrus: A Golgi, ultrastructural and immunohis-tochemical analysis in the developing rhesus monkey. J. comp. Neurol.223 (1984) 1–21.

    Article  CAS  PubMed  Google Scholar 

  9. Edelman, G.M., Cell adhesion molecules. Science219 (1983) 450–457.

    Article  CAS  PubMed  Google Scholar 

  10. Edelman, G.M., Modulation of cell adhesion during induction, histogenesis and perinatal development of the nervous system. A. Rev. Neurosci.7 (1984) 339–377.

    Article  CAS  Google Scholar 

  11. Edelman, G.M., Cunningham, B.A., and Thiery, J.P. (Eds), Morpholoregulatory Molecules. Wiley and Sons, New York 1990.

    Google Scholar 

  12. Edmundson, J.C., Liem, R.K.H., Kuster, J.C., and Hatten, M.E., Astrotactin: A novel neuronal cell surface antigen that mediates neuronastroglial interaction in cerebellar microcultures. J. Cell Biol.106 (1988) 505–517.

    Article  Google Scholar 

  13. Evrard, P., Caviness, V.S., Prats-Vinas, J., and Lyon, G., The mechanisms of arrest of neuronal migration in the Zellweger malformation: An hypothesis based upon cytoarchitectonic analysis. Acta neuropath.41 (1978) 109–117.

    Article  CAS  PubMed  Google Scholar 

  14. Galaburda, A.M., Rosen, G.D., and Sherman, G.F., The neural origin of developmental dyslexia: Implications for medicine, neurology and cognition, in: From Reading to Neurons, pp. 377–404. Ed. A.M. Galaburda, MIT Press, Cambridge 1989.

    Google Scholar 

  15. Garcia-Segura, L.M., and Rakic, P., Differential distribution of intermembranous particles in the plasmalemma of the migrating cerebellar granule cells. Dev. Brain Res.23 (1985) 145–149.

    Article  Google Scholar 

  16. Gasser, V.E., and Hatten, M.E., Cerebellar granule neurons migrate on hippocampal astroglial fibers in vitro. Proc. natl Acad. Sci. USA (1990) in press.

  17. Hanneman, E., Trevarow, B., Metcalfe, W.K., Kimmel, C.B., and Westerfield, M., Segmental pattern of development of the hindbrain and spinal cord of the zebra fish embryo. Development103 (1988) 49–58.

    Article  CAS  PubMed  Google Scholar 

  18. Hatten, M.E., A common mechanism for glial-guided neuronal migration in different regions of the developing brain. TINS (1990) in press.

  19. Hatten, M.E., Glia-guided neuronal migration in vitro, in: Morphoregulatory Molecules, pp. 469–489, Eds G.E. Edelman, B.A. Cunningham and J.P. Thiery, Wiley, New York 1990.

    Google Scholar 

  20. Hatten, M.E., and Mason, C.A., Neuron-astroglia interactions in vitro and in vivo. TINS9 (1986) 168–174.

    Google Scholar 

  21. Hockfield, S., and McKay, R., Identification of major cell classes in the developing mammalian nervous system. J. Neurosci.5 (1985) 3310–3329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jensen, K.F., and Killackey, H.P., Subcortical projections from ectopic neocortical neurons. Proc. natl Acad. Sci. USA81 (1984) 964–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johnston, J., and Van der Kooy, D., Protooncogene expression identifies a columnar organization of the ventricular zone. Proc. natl Acad. Sci. USA86 (1989) 1066–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Keynes, R., and Stern, C.D., Mechanism of vertebrate segmentation. Development103 (1988) 413–429.

    Article  CAS  PubMed  Google Scholar 

  25. Killackey, H.P., and Dawson, D.R., Expansion of the central hindpaw representation following fetal forelimb removal. Eur. J. Neurosci.1 (1989) 210–221.

    Article  PubMed  Google Scholar 

  26. LeDouarin, N., The Neural Crest. Cambridge Univ. Press, 1982.

  27. Levitt, P., and Rakic, P., Immunoperoxidase localization of glial fibrillary acid protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J. comp. Neurol.193 (1980) 815–840.

    Article  CAS  PubMed  Google Scholar 

  28. Levitt, P., Cooper, M.L., and Rakic, P., Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: An ultrastructural immunoperoxidase analysis. J. Neurosci.1 (1981) 27–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Levitt, P., Cooper, M.L., and Rakic, P., Early divergence and changing proportions of neuronal and glial precursor cells in the primate cerebral ventricular zone. Devl Biol.96 (1983) 472–484.

    Article  CAS  Google Scholar 

  30. Liesi, P., Extracellular matrix and neuronal migration. Experientia46 (1990) 900–907.

    Article  CAS  PubMed  Google Scholar 

  31. Lumsden, A., and Keynes, R., Segmental patterns of neuronal development in chick hindbrain. Nature337 (1989) 424–428.

    Article  CAS  PubMed  Google Scholar 

  32. Luskin, M.B., Pearlman, A.L., and Sanes, J.R., Cell lineage in the cerebral cortex of the work studied in vivo and in vitro with recombinant retrovirus. Neuron1 (1988) 635–647.

    Article  CAS  PubMed  Google Scholar 

  33. Nowakowski, R.S., and Rakic, P., Mode of migration of neurons to the hippocampus: A Golgi and electron microscopic analysis in fetal rhesus monkey. J. Neurocytol.8 (1979) 697–718.

    Article  CAS  PubMed  Google Scholar 

  34. McConnell, S.K., Development and decision-making in the mammalian cerebral cortex. Brain Res. Rev.13 (1988) 1–23.

    Article  Google Scholar 

  35. Moody, S.A., and Heaton, M.B., Ultrastructural observations of the migration and early development of trigeminal motoneurons in chick embryos. J. comp. Neurol.216 (1983) 20–35.

    Article  CAS  PubMed  Google Scholar 

  36. O'Leary, D.D.M., Do cortical areas emerge from a protocortex? TINS12 (1989) 400–406.

    CAS  PubMed  Google Scholar 

  37. Ono, K., and Kawamura, K., Migration of immature neurons along tangentially oriented fibers in the subpial part of the fetal mouse medulla oblongata. Exp. Brain Res. (1989) 290–300.

  38. Picker, L.J., Nakache, M., and Butcher, E.C., Monoclonal antibodies to human lymphocyte homing receptors define a novel class of adhesion molecules on diverse cell types. J. Cell Biol.109 (1989) 927–937.

    Article  CAS  PubMed  Google Scholar 

  39. Rakic, P., Guidance of neurons migrating to the fetal monkey neocortex. Brain Res.33 (1971) 471–476.

    Article  CAS  PubMed  Google Scholar 

  40. Rakic, P., Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus rhesus. J. comp. Neurol.141 (1971) 283–312.

    Article  CAS  PubMed  Google Scholar 

  41. Rakic, P., Mode of cell migration to the superficial layers of fetal monkey neocortex. J. comp. Neurol.145 (1972) 61–84.

    Article  CAS  PubMed  Google Scholar 

  42. Rakic, P., Kinetics of proliferation and latency between final cell division and onset of differentiation of cerebellar stellate and basket neurons. J. comp. Neurol.147 (1973) 523–546.

    Article  CAS  PubMed  Google Scholar 

  43. Rakic, P., Embryonic development of the LP-pulvinar complex in man, in: LP-pulvinar Complex, pp. 3–25. Eds I.S. Cooper, M. Riklan and P. Rakic. Charles C. Thomas, New York 1974.

    Google Scholar 

  44. Rakic, P., Neurons in the monkey visual cortex: Systematic relation between time of origin and eventual disposition. Science183 (1974) 425–427.

    Article  CAS  PubMed  Google Scholar 

  45. Rakic, P., Genesis of the dorsal lateral geniculate nucleus in the rhesus monkey: site and time of origin, kinetics of proliferation, routes of migration. J. comp. Neurol.176 (1977) 23–52.

    Article  CAS  PubMed  Google Scholar 

  46. Rakic, P., Neuron-glial interaction during brain development. Trends Neurosci.4 (1981) 184–187.

    Article  Google Scholar 

  47. Rakic, P., Emergence of neuronal and glial cell lineages in primate brain, in: Cellular and Molecular biology of neural Development, pp. 29–50. Ed. I.B. Black, Plenum, New York 1984.

    Chapter  Google Scholar 

  48. Rakic, P., Contact regulation of neuronal migration, in: The Cell in Contact, pp. 67–90. Eds. G.E. Edelman and J.P. Thiery, Wiley, New York 1985.

    Google Scholar 

  49. Rakic, P., Specification of cerebral cortical areas. Science241 (1988) 170–176.

    Article  CAS  PubMed  Google Scholar 

  50. Rakic, P., Defects of neuronal migration and pathogenesis of cortical malformations. Prog. Brain Res.73 (1988) 15–37.

    Article  CAS  PubMed  Google Scholar 

  51. Rakic, P., Radial unit hypothesis of cerebral cortical evolution. Exp. Brain Res. Suppl. (1990) in press.

  52. Rakic, P., and Sidman, R.L., Telencephalic origin of pulvinar neurons in the fetal human brain. Z. Anat. Entwickl. Gesch.129 (1969) 53–82.

    Article  CAS  Google Scholar 

  53. Rakic, P., Stensaas, L.J., Sayre, E.P., and Sidman, R.L., Computeraided three-dimensional reconstruction and quantitative analysis of cells from serial electronmicroscopic montages of fetal monkey brain. Nature250 (1974) 31–34.

    Article  CAS  PubMed  Google Scholar 

  54. Rakic, P., Suner, I., and Williams, R.W., Novel cytoarchitectonic field induced experimentally within the primate striate cortex. (1990) submitted.

  55. Ramon y Cajal, S., Histologie du Système Nerveux de l'Homme et des Vertèbres, Vol. 2. Maloine, Paris 1911.

    Google Scholar 

  56. Retzius, G., Die Neuroglia des Gehirns beim Menschen und bei Säugetieren. Biol. Untersuch.6 (1984) 1–24.

    Google Scholar 

  57. Sanes, J., Analyzing cell lineage with a recombinant retrovirus. TINS12 (1989) 21–28.

    CAS  PubMed  Google Scholar 

  58. Schachner, M., Faissner, A., Fischer G., Keilhauer, G., Krause, J., Kunemund, V., Lindner, J., and Wernecke, H., Functional and structural aspects of the cell surface in mammalian nervous system development, in: The Cell in Contact, pp. 257–276. Eds G.M. Edelman and J.P. Thiery, Wiley, New York 1985.

    Google Scholar 

  59. Schambra, V.B., Sulik, K.K., Petrusz, P.P., and Lauder, J.M., Ontogeny of cholinergic neurons in the mouse forebrain. J. comp. Neurol.288 (1989) 101–122.

    Article  CAS  PubMed  Google Scholar 

  60. Schmechel, D.E., and Rakic, P., Arrested proliferation of radial glial cells during midgestation in rhesus monkey. Nature227 (1979) 303–305.

    Article  Google Scholar 

  61. Schmechel, D.E., and Rakic, P., A Golgi study of radial glial cells in developing monkey telencephalon. Anat. Embryol.156 (1979) 115–152.

    Article  CAS  Google Scholar 

  62. Schull, W.J., Dobbing, J., Kameyama, Y., O'Rahilly, R., Rakic, P., and Silini, G., Developmental effects of irradiation on the brain of the embryo and fetus. Annls ICRP16 (1986) 1–43.

    Article  Google Scholar 

  63. Schwanzel-Fukuda, M., and Pfaff, D., The migration of luteinizing hormone-releasing hormone (LHRH) neurons from the medial olfactory placade into the medial basal forebrain. Experientia46 (1990) 956–962.

    Article  CAS  PubMed  Google Scholar 

  64. Schwartz, M.L., Rakic, P., and Goldman-Rakic, P.S., Early target specification in cortical neurons: evidence that a subclass of migrating neurons have callosal axons. Neuron (1990) submitted.

  65. Sidman, R.L., and Rakic, P., Neuronal migration with special reference to developing human brain: A review. Brain Res.62 (1973) 1–35.

    Article  CAS  PubMed  Google Scholar 

  66. Volpe, J., Neurology of the Newborn, 2nd edn. Saunders, Philadelphia 1987.

    Google Scholar 

  67. Walsh, C., and Cepko, C.L., Cell lineage and cell migration in the developing cerebral cortex. Experientia46 (1990) 940–947.

    Article  CAS  PubMed  Google Scholar 

  68. Wray, S., Grant, P., and Gainer, H., Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory plueode. Proc. natl Acad. Sci. USA86 (1989) 8132–8136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakic, P. Principles of neural cell migration. Experientia 46, 882–891 (1990). https://doi.org/10.1007/BF01939380

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01939380

Key words

Navigation