Skip to main content
Log in

Axoplasmic organelles at nodes of Ranvier. I. Occurrence and distribution in large myelinated spinal root axons of the adult cat

  • Published:
Journal of Neurocytology

Summary

Using light microscopy (LM) and electron microscopy (EM) we have examined the occurrence and distribution of axoplasmic organelles in large myelinated nerve fibres of the L7 ventral and dorsal spinal roots of the cat with special reference to the paranode-node-paranode (pnp)-regions. Ninety-eight percent of the 550 Toluidine Blue-stained paranode-node-paranode-regions examined in the light microscope contained dark-blue bodies accumulated distal to the midlevel of the paranode-node-paranode-region. Further, a veil of Toluidine Blue positive material was observed in about 50% of the paranode-node-paranode-regions. In about 25% of these paranode-node-paranode-regions the veil lay distal to the midlevel of the paranode-node-paranode-region and in the. remainder it lay proximally. Electron microscopy suggested that the ultrastructural equivalents of the dark-blue bodies and of the veil were dense lamellar bodies and a diffuse granular material, respectively. Our calculations indicate that from 70% to more than 90% of some organelles (dense lamellar bodies, multivesicular bodies and vesiculo-tubular membranous organelles) present in an axon are accumulated in the paranode-node-paranode-regions. The occurrence of these organelles in the individual paranode-node-paranode-regions varied within wide limits also in adjacent fibres. The dense lamellar and multivesicular bodies dominated the distal part of the paranode-node-paranode-regions while the vesiculo-tubular membranous organelles dominated the proximal part, i.e. the organelles showed a mutual proximo-distal segregation with reference to the midlevel of the paranode-node-paranode-region. of seventeen paranode-node-paranode-regions analyzed ultrastructurally, seven were classified as ‘fully segregated’, that is 67% or more of the lamellar and multivesicular bodies, present in the whole paranode-node-paranode-region, lay distal to the mid-level, and 67% or more of the vesiculo-tubular membranous organelles lay proximal to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen, R. D., Metuzals, J., Tasaki, I., Brady, S. T. &Gilbert, S. P. (1982) Fast axonal transport in squid giant axon.Science 218, 1127–9.

    PubMed  Google Scholar 

  • Alv Arez, J. &Zardour, J. (1983) Microtubules in short and long axons of the same caliber: implications for the maintenance of the neuron.Experimental Neurology 79, 283–6.

    PubMed  Google Scholar 

  • Armstrong, R., Toews, A. D. &Morell, P. (1987) Axonal transport through nodes of Ranvier.Brain Research 412, 196–9.

    PubMed  Google Scholar 

  • Berthold, C. -H. (1968a) A study of the fixation of a large mature feline myelinated lumbar spinal root fibres.Acta Societatis Medicorum Upsaliensis 73 Suppl 9, 1–36.

    Google Scholar 

  • Berthold, C. -H. (1968b) Ultrastructure of the nodeparanode region of mature feline ventral lumbar spinalroot fibres.Acta Societatis Medicorum Upsaliensis 73 Suppl 9, 73–8.

    Google Scholar 

  • Berthold, C. -H. (1978) Morphology of normal peripheral axons. InPhysiology and Pathobiology of Axons (edited byWaxman, S. G.) pp. 3–63. New York: Raven Press.

    Google Scholar 

  • Berthold, C. -H. (1982) Some aspects of the ultrastructural organization of the peripheral myelinated axons in the cat. InAxoplasmic Transport (edited byWeiss, D. G.) pp. 40–54. Berlin: Springer-Verlag.

    Google Scholar 

  • Berthold, C. -H. &Mellström, A. (1982) Distribution of peroxidase activity at nodes of Ranvier after intramuscular administration of horseradish peroxidase in the cat.Neuroscience 7, 45–54.

    PubMed  Google Scholar 

  • Berthold, C. -H., Corneliuson, O. &Mellström, A. (1982) Peroxidase activity at nodes of Ranvier in lumbosacral ventral roots and in the PNS-CNS transitional region after intramuscular administration of horseradish peroxidase.Journal of Neurocytology 155, 253–60.

    Google Scholar 

  • Berthold, C. -H. &Rydmark, M. (1983) Anatomy of the paranode-node-paranode region in the cat.Experientia 39, 964–75.

    PubMed  Google Scholar 

  • Berthold, C. -H. &Mellström, A. (1986) Peroxidase activity at consecutive nodes of Ranvier in the nerve to the medial gastrocnemius muscle after intramuscular administration of horseradish peroxidase.Neuroscience 19, 1349–62.

    PubMed  Google Scholar 

  • Bisby, M. A. (1983) Velocity of axonal transport of labeled protein is not dependent on local concentration.Experimental Neurology 79, 168–75.

    PubMed  Google Scholar 

  • Bisby, M. A. &Bulger, V. T. (1977) Reversal of axonal transport at a nerve crush.Journal of Neurochemistry 29, 313–20.

    PubMed  Google Scholar 

  • Brady, S. T., Lasek, R. J. &Allen, R. D. (1985) Video microscopy of fast axonal transport in extruded axoplasm: a new model for study of molecular mechanisms.Cell Motility 5, 81–101.

    PubMed  Google Scholar 

  • Cooper, P. D. &Smith, R. S. (1974) The movement of optically detectable organelles in myelinated axons ofXenopus laevis.Journal of Physiology 242, 77–97.

    PubMed  Google Scholar 

  • De Rényi, G. (1928) The structure of cells in tissues as revealed by microdissection. II. The physical properties of the axis cylinder in the myelinated nerve fibre of the frog.Journal of Comparative Neurology 47, 405–25.

    Google Scholar 

  • De Rényi, G. (1929) The structure of cells in tissues as revealed by microdissection. III. Observations on the sheaths of myelinated nerve fibres of the frog.Journal of Comparative Neurology 48, 293–310.

    Google Scholar 

  • De Waegh, S. M. &Brady, S. T. (1990) Altered slow axonal transport and regeneration in a myelin-deficient mutant mouse: the Trembler as anin vivo model for Schwann cell — axon interactions.Journal of Neuroscience 10, 1855–65.

    PubMed  Google Scholar 

  • De Waegh, S. M. &Brady, S. T. (1991) Local control of axonal properties by Schwann cells: Neurofilaments and axonal transport in homologous and heterologous nerve grafts.Journal of Neuroscience Research 30, 201–12.

    PubMed  Google Scholar 

  • De Waegh, S. M., Lee, V. M.-Y. &Brady, S. T. (1992) Local modulation of neurofilament phosphorylation, axonal caliber and slow axonal transport by myelinating Schwann cells.Cell 68, 451–63.

    PubMed  Google Scholar 

  • Droz, B., Rambourg, A. &Koenig, H. L. (1975) The smooth endoplasmic reticulum: structure and role in the renewal of axonal membrane and synaptic vesicles by fast axonal transport.Brain Research 93, 1–13.

    PubMed  Google Scholar 

  • Ellisman, M. H. &Lindsey, J. D. (1983) The axoplasmic reticulum within myelinated axons is not transported rapidly.Journal of Neurocytology 12, 393–411.

    PubMed  Google Scholar 

  • Fadic, R., Vergara, J. &Alvarez, J. (1985) Mkrotubules and caliber of central and peripheral processes of sensory axons.Journal of Comparative Neurology 236, 258–64.

    PubMed  Google Scholar 

  • Fahim, M. A., Lasek, R. J., Brady, S. T. &Hodge, A. J. (1985) AVEC-DIC and electron microscopic analyses of axonally transported particles in cold-blocked squid giant axons.Journal of Neurocytology 14, 689–704.

    Google Scholar 

  • Gatzinsky, K. P. &Berthold, C. -H. (1990) Lysosomal activity at nodes of Ranvier during retrograde axonal transport of horseradish peroxidase in alpha-motor neurons of the cat.Journal of Neurocytology 19, 989–1002.

    PubMed  Google Scholar 

  • Gatzinsky, K. P., Berthold, C. -H. &Rydmark, M. (1991) Axon-Schwann cell networks are regular components of nodal regions in normal large nerve fibres of cat spinal roots.Neuroscience Letters 124, 264–8.

    PubMed  Google Scholar 

  • Grafstein, B. &Forman, D. S. (1980) Intracellular transport in neurons.Physiological Reviews 60, 1167–283.

    PubMed  Google Scholar 

  • Griffin, J. W., Price, D. L. &Engel, W. K. (1977) The pathogenesis of reactive axonal swellings: role of axonal transport.Journal of Neuropathology and Experimental Neurology 36, 214–27.

    Google Scholar 

  • Ishikawa, H. &Tsukita, S. (1982) Morphological and functional correlates of axoplasmic transport. InAxoplasmic Transport (edited byWeiss, D. G.) pp. 251–9. Berlin: Springer-Verlag.

    Google Scholar 

  • Kristensson, K. (1970) Transport of fluorescent protein tracer in peripheral nerves.Acta Neuropathologica 16, 293–300.

    PubMed  Google Scholar 

  • Kristensson, K. &Olsson, Y. (1971a) Retrograde axonal transport of protein.Brain Research 29, 363–5.

    PubMed  Google Scholar 

  • Kristensson, K. &Olsson, Y. (1971b) Uptake and retrograde axonal transport of peroxidase in hypoglossal neurons. Electron microscopical localization in the neuronal perikaryon.Acta Neuropathologica 19, 1–9.

    PubMed  Google Scholar 

  • Landon, D. N. &Hall, S. (1976) The myelinated nerve fibre. InThe Peripheral Nerve (edited byLandon, D. N.), pp. 1–105. London: Chapman and Hall.

    Google Scholar 

  • Landon, D. N. (1981) Structure of normal peripheral myelinated nerve fibres.Advances in Neurology 31, 25–49.

    PubMed  Google Scholar 

  • Martz, D., Lasek, R. J., Brady, S. T. &Allen, R. D. (1984) Mitochondrial mobility in axons: membranous organelles may interact with the force generating system through multiple surface binding sites.Cell Motility 4, 89–101.

    PubMed  Google Scholar 

  • Maxwell, W. L., Irvine, A., Strang, R. H. C., Graham, D. I., Adams, J. H. &Gennarelli, T. A. (1990) Glycogen accumulation in axons after stretch injury.Journal of Neurocytology 19, 235–41.

    Google Scholar 

  • Mohammed, K. H. M. &Landon, D. N. (1983) Axoplasmic asymmetry at the node of Ranvier.Journal of Anatomy 137, 820–2.

    Google Scholar 

  • Muralt, A. Von (1946)Die Signalübermittlung in Nerven. Basel: Birkhäuser Verlag.

    Google Scholar 

  • Nilsson, I. &Berthold, C. -H. (1988) Axon classes and internodal growth in the ventral spinal root L7 of adult and developing cats.Journal of Anatomy 156, 71–96.

    PubMed  Google Scholar 

  • Okabe, S. &Hirokawa, N. (1990) Turnover of fluorescently labelled tubulin and actin in the axon.Nature 343, 479–82.

    PubMed  Google Scholar 

  • Okamura, Y. &Tsukita, S. (1986) Morphology of freeze-substituted myelinated axon in mouse peripheral nerve.Brain Research 383, 146–58.

    PubMed  Google Scholar 

  • Ottoson, D. (1952) Structural properties of the myelinated nerve fibre as revealed by microinjection.Acta Physiologien Scandinavica 29 Suppl 109, 161–9.

    Google Scholar 

  • Peachey, L. D. (1958) Thin sections: a study of section thickness and physical distortion produced during microtomy.Journal of Biophysical and Biochemical Cytology 4, 233–42.

    PubMed  Google Scholar 

  • Pease, D. C. &Baker, R. F. (1951) Electron microscopy of nervous tissue.Anatomical Record 110, 505–30.

    PubMed  Google Scholar 

  • Philips, D. D., Hibbs, R. G., Ellison, J. P. &Shapiro, H. (1972) An electron microscopic study of central and peripheral nodes of Ranvier.Journal of Anatomy 111, 229–38.

    PubMed  Google Scholar 

  • Price, R. L., Lasek, R. J. &Katz, M. J. (1991) Microtubules have special physical associations with smooth endoplasmic reticula and mitochondria in axons.Brain Research 540, 206–16.

    Google Scholar 

  • Raine, C. S. (1982) Differences between the nodes of Ranvier of large and small diameter fibers in the PNS.Journal of Neurocytology 11, 947–953.

    Google Scholar 

  • Raine, C. S., Finch, H. &Masone, A. (1983) Axoplasmic asymmetry at the node of Ranvier.Journal of Neurocytology 12, 533–6.

    PubMed  Google Scholar 

  • Raine, C. S. &Cross, A. H. (1989) Axonal dystrophy as a consequence of long-term demyelination.Laboratory Investigation 60, 714–25.

    PubMed  Google Scholar 

  • Ranvier, L. (1888)Technisches Lehrbuch der Histologie (translated byNicati, W. &Von Wyss, H.). Leipzig: F.C.W. Voget Verlag.

    Google Scholar 

  • Reese, T. S. (1989) The molecular basis of axonal transport. Kinesin and other transport proteins.Fidia Research Foundation Neuroscience Award Lectures 3, 99–120.

    Google Scholar 

  • Reles, A. &Friede, R. L. (1991) Axonal cytoskeleton at the nodes of Ranvier.Journal of Neurocytology 20, 450–8.

    PubMed  Google Scholar 

  • Rozsa, G., Morgan, C., Szent-Györgi, A. &Wyckoff, R. G. W. (1950) The electron microscopy of myelinated nerve.Biochemica et Biophysica Acta 6, 13–27.

    Google Scholar 

  • Robertson, J. D. (1959) Preliminary observations on the ultrastructure of nodes of Ranvier.Zeitschrift für Zellforschung 50, 553–60.

    Google Scholar 

  • Rydmark, M. (1981) Nodal axon diameter correlates linearly with internodal axon diameter in spinal root of the cat.Neuroscience Letters 24, 247–50.

    PubMed  Google Scholar 

  • Rydmark, M. &Berthold, C. -H. (1983) Electron microscopic serial section analysis of nodes of Ranvier in lumbar spinal roots of the cat: a morphometric study of nodal compartments in fibres of different sizes.Journal of Neurocytology 12, 537–65.

    Google Scholar 

  • Sahenk, Z. &Lasek, R. J. (1988) Inhibition of proteolysis blocks anterograde-retrograde conversion of axonally transported vesicles.Brain Research 460, 199–203.

    PubMed  Google Scholar 

  • Smith, R. S. (1980) The short term accumulation of axonally transported organelles in the region of located lesions of single myelinated axons.Journal of Neurocytology 9, 39–65.

    PubMed  Google Scholar 

  • Smith, R. S. (1987) Control of the direction of rapid axonal transport in the vertebrates. InAxonal Transport (edited bySmith, R. S. &Bisby, M. A.) pp. 139–54. New York: Alan R. Liss.

    Google Scholar 

  • Smith, R. S. (1988) Studies on the mechanism of the reversal of rapid organelle transport in myelinated axons ofXenopus laevis.Cell Motility and the Cytoskeleton 10, 296–308.

    PubMed  Google Scholar 

  • Smith, R. S. (1989) Real-time imaging of axonally transported subresolution organelles in vertebrate myelinated axons.Journal of Neuroscience Methods 26, 203–9.

    PubMed  Google Scholar 

  • Smith, R. S. &Forman, D. S. (1988) Organelle dynamics in lobster axons: anterograde and retrograde particulate organelles.Brain Research 446, 26–36.

    PubMed  Google Scholar 

  • Smith, R. S. &Snyder, R. E. (1991) Reversal of rapid axonal transport at a lesion: leupeptin inhibits reversed protein transport, but does not inhibit reversed organelle transport.Brain Research 552, 215–27.

    PubMed  Google Scholar 

  • Snyder, R. E. (1989) Loss of material from the retrograde axonal transport system in frog sciatic nerve.Journal of Neurobiology 20, 81–94.

    PubMed  Google Scholar 

  • Spencer, P. S. &Griffin, J. W. (1982) Disruption of axoplasmic transport by neurotoxic agents. The 2,5-hexadione model. InAxoplasmic Transport in Physiology and Pathology (edited byWeiss, D. G. &Gorio, A.) pp. 92–103. Berlin: Springer Verlag.

    Google Scholar 

  • Spencer, P. S. &Thomas, P. K. (1974) Ultrastructural studies of the dying-back process. II. The sequestration and removal by Schwann cells and oligodendrocytes of organelles from normal and diseased axons.Journal of Neurocytology 3, 763–83.

    PubMed  Google Scholar 

  • Studelska, D. R. &Brimijoin, S. (1989) Partial isolation of two classes of dopamine-β-hydroxylase-contaim'ng particles undergoing rapid axonal transport in rat sciatic nerve.Journal of Neurochemistry 53, 622–31.

    PubMed  Google Scholar 

  • Tsukita, S. &Ishikawa, H. (1976) Three-dimensional distribution of smooth endoplasmic reticulum in myelinated axons.Journal of Electron Microscopy 25, 141–9.

    PubMed  Google Scholar 

  • Tsukita, S. &Ishikawa, H. (1980) The movement of membranous organelles in axons.Journal of Cell Biology 84, 513–30.

    PubMed  Google Scholar 

  • Tsukita, S. &Ishikawa, H. (1981) The cytoskeleton in myelinated axons: Serial section study.Biomedical Research 2, 424–37.

    Google Scholar 

  • Uhrik, B. &Stämpfli, R. (1981) Ultrastructural observations on nodes of Ranvier from isolated single frog peripheral nerves.Brain Research 215, 93–101.

    PubMed  Google Scholar 

  • Vallee, R. B. &Bloom, G. S. (1991) Mechanisms of fast and slow axonal transport.Annual Review of Neuroscience 14, 59–92.

    PubMed  Google Scholar 

  • Van Deurs, B., Petersen, O. W., Olsnes, S. &Sandvig, K. (1989) The way of endocytosis.International Review of Cytology 117, 131–77.

    PubMed  Google Scholar 

  • Weiss, D. G., Seitz-Tutter, D., Langford, G. M. &Allen, R. D. (1987) The native microtubule as the engine for the bidirectional organelle movements.Neurology and Neurobiology 25, 91–111.

    Google Scholar 

  • Zelena, J. (1968) Bidirectional movements of mitochondria along axons of an isolated nerve segment.Zeitschrift für Zellforschung 92, 186–96.

    Google Scholar 

  • Zelena, J. (1980) Arrays of glycogen particles in the axoplasm of peripheral nerves at pre-ovoid stages of Wallerian degeneration.Acta Neuropathologica 50, 227–32.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthold, C.H., Fabricius, C., Rydmark, M. et al. Axoplasmic organelles at nodes of Ranvier. I. Occurrence and distribution in large myelinated spinal root axons of the adult cat. J Neurocytol 22, 925–940 (1993). https://doi.org/10.1007/BF01218351

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01218351

Keywords

Navigation