SUPPLEMENTAL MATERIALS

Supplemental Figure 1

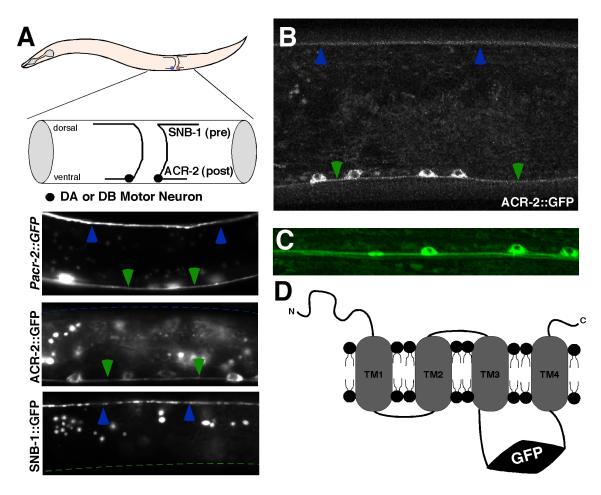


Figure S1. Expression of the non-alpha nAChR subunit ACR-2.

(A) Schematic depicting morphology of cholinergic DA and DB motor neurons in an L1 animal. Wide-field epifluorescent projection images of the ventral (green) and dorsal (blue) nerve cords in L1 animals expressing integrated arrays containing either the transcriptional reporter *Pacr-2::GFP* (*ufIs49*, top), full-length *Pacr-2::ACR-2::GFP* (*ufIs42*, middle) or a presynaptic marker (*Punc-4::SNB-1::GFP*, lower). *Pacr-2::GFP* fluorescence is present in both ventral and dorsal nerve cords. Expression of the synaptic vesicle marker synaptobrevin (SNB-1::GFP) is limited to axons of the dorsal nerve cord. ACR-2::GFP fluorescence is limited to dendrites in the ventral nerve cord. (B) Projection

of a confocal stack showing the dorsal and ventral nerve cords of an adult animal expressing full-length ACR-2::GFP. (C) Confocal image of ventral nerve cord showing diffuse ACR-2::GFP fluorescence. (D) Schematic of ACR-2 membrane topology and site of GFP insertion.

Supplemental Figure 2

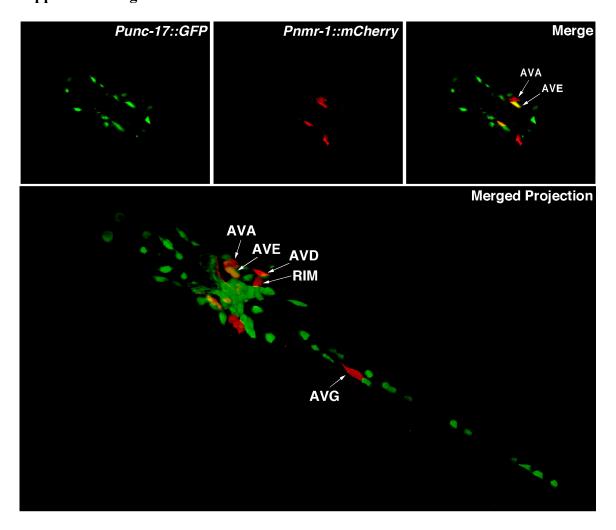


Figure S2. $C.\ elegans$ command interneurons do not express Punc-17::GFP.

(A-C) Single confocal images of an animal co-expressing an integrated array (vsIs48) containing the cholinergic neuron marker *Punc-17::GFP* together with an

extrachromosomal array (*ufEx158*) containing *Pnmr-1::mCherry*. (**D**) A confocal projection showing the relative positions of neuronal cell bodies expressing *Punc-17::GFP* and *Pnmr-1::mCherry* in the head of the worm. Neurons expressing mCherry are indicated. Only a single AVA neuron expresses mCherry due to mosaic expression of the array.

Supplemental Figure 3

- **△** 1 MKKTVKILLILITVFLKVHCNGGHDDEAADFLSHTNIDDPNNSSDPNKNS
 - 51 DQGDTMGEDEDRLVIDLFREYNFLIRPVKNVSSPPVVVDFGVAMILLIV
 - 101 DEKNQILQTNVWLTMKWNDQLAWNPAEYGNISNLHVPSDRVWLPDIVLF
 - 151 NNADGNYEVSFKSNVFVDHHGDVTWVPPAMFKSSCRIDVEWFPFDEQCCT
 - 201 LVFGSWTYNSEEVRLHWYNNIQAVQLHDYSYSGIWDVIDVPGQLVHKPDL
 - 251 KENKMVFNVVIRRKTLFYTVILIIPTVLMAFLSVMAFYLPVDSGEKVSLT
 - 301 ISLLLALVVFLLLVSKILPPTSNIPLMGKYLLLAFVLNITAVVGTVVIVN
 - 351 IYFRSALSHKMPTWVRKVFLEFLPHLLVMKRPERIPIFNGYFVEEYCASE
 - 401 IFDASLVMPSMTATMLPFLQVTTNLKAASSTSSGQSSEHHENCSKWKKRL
 - 451 SIRMSKRRAPRARLDDDSEDIIDDTNGNHVDSLQEKISKEMKTTVEAIAY
 - 501 IAEHMKREMSLKKMRDDWKYVAMVLDRLILLIFFGVTLGGTLGIICSAPH
 - 551 VFDFVDQEAIISKLNAKYLPSDMYS

В	M2 Transmembrane Region
ACR-2	EKVSLTISLLLALVVFLLLVSKILP
BETA1	EKMGLSIFALLTLTVFLLLLADKVP
BETA2	EKMTLCISVLLALTVFLLLISKIVP
BETA4	EKMTLCISVLLALTFFLLLISKIVP
GAMMA	QKCTVATNVLLAQTVFLFLVAKKVP
DELTA	EKTSVAISVLLAQSVFLLLISKRLP
EPSILON	QKCTVSINVLLAQTVFLFLIAQKIP

Figure S3. Sequence features of ACR-2.

(A) Amino acid sequence of ACR-2. Predicted signal sequence (dashed box), transmembrane domains (underline), cys-loop (gray), gain-of-function mutation (box),

and site of GFP insertion (asterisks) are indicated. **(B)** Alignment of the second transmembrane domain of ACR-2 and various mammalian non-alpha subunits. The site of the 9' leucine to serine gain-of-function mutation is indicated (box).

Supplemental Figure 4

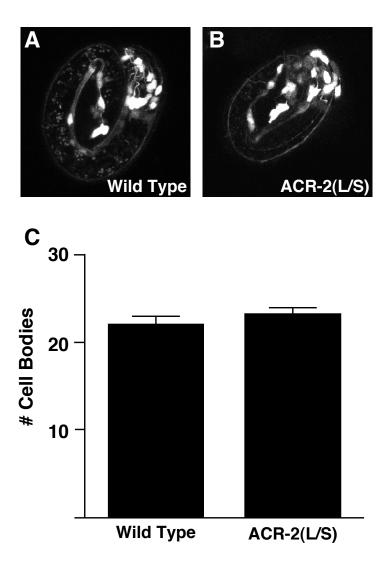


Figure S4. Wild type and ACR-2(L/S) animals have the same number of *acr-2* expressing cells at the 3-fold embryo stage.

(A and B) Confocal images of wild type (A) and ACR-2(L/S) (B) 3-fold embryos expressing an integrated array containing Pacr-2::GFP (ufIs49). Images represent Z-projections of 23 slices (0.5 µm/slice). (C) Quantification of the average number of Pacr-2::GFP labeled cell bodies present in wild type and ACR-2(L/S) 3-fold embryos. Data represents the mean \pm SEM of at least ten animals per genotype.

Supplemental Figure 5

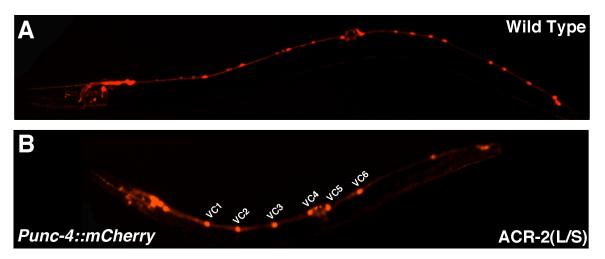


Figure S5. The VC neurons remain present in transgenic ACR-2(L/S) animals.

Confocal images of wild type (A) and ACR-2(L/S) (B) animals expressing an integrated array (ufls26) that contains Punc-4::mCherry.

Supplemental Figure 6

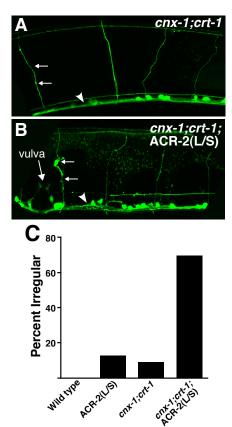


Figure S6. Motor neuron processes are irregular in *cnx-1;crt-1* double mutants expressing transgenic ACR-2(L/S).

(A and B) Confocal images of commissural processes and ventral nerve cord processes in *cnx-1;crt-1* double mutants (A) and *cnx-1;crt-1* double mutants expressing the ACR-2(L/S) transgene (B). Arrowheads show normally fasciculated ventral nerve cord in *cnx-1;crt-1* double mutants (A) and defasciculation in *cnx-1;crt-1;*ACR-2(L/S) animals (B). Arrows show normal commissural process in (A) and ectopic sprouting in (B). In each case, a region immediately posterior of the vulva was imaged and the ventral nerve cord is positioned at the bottom. Images show Z-projections of 34 confocal planes (A) or 33 confocal planes (B) (0.5 μm/slice). For all fluorescent imaging, animals are expressing an integrated *Punc-17::GFP* transgene (*vsIs48*). (C) Quantification of the percentage of

irregular commissural processes in wild type (15 commissures from 5 animals), transgenic ACR-2(L/S) (39 commissures from 10 animals), *cnx-1;crt-1* (75 commissures from 19 animals) and *cnx-1;crt-1*;ACR-2(L/S) (93 commissures from 17 animals). Since *Punc-17::*GFP also labels AS motor neurons that project commissural axons and do not express *acr-2*, the percentage of axonal defects in ACR-2(L/S) expressing neurons is likely higher.

Supplemental Table 1. Suppressors of ACR-2(L/S) induced paralysis isolated from a forward genetic screen.

% Paralyzed*				
$\mathbf{Allele}^{\dagger}$	(levamisole)	Gene		
Wild type	90±3			
e264	3±3	unc-38		
uf62	0	unc-38		
uf67	0	unc-38		
uf153	0	unc-38		
E306	0	unc-50		
uf86	3±3	unc-50		
e883	0	unc-74		
uf124	0	unc-74		
uf72	5±5	unc-74		
ok1075	3±2	unc-63		
uf79	5±5	unc-63		
ok367	94±4	acr-12		
uf65	95±5	acr-12		
uf65	75±12	acr-12		
uf65	85±5	acr-12		
uf65	70 ± 10	acr-12		
uf65	100	acr-12		
uf66	90±4	acr-12		
uf66	98±3	acr-12		
uf66	85±5	acr-12		
uf77	95±5	acr-12		
uf77	45±5	acr-12		
uf77	93±5	acr-12		
uf77	95±5	acr-12		
uf77	75±5	acr-12		
uf77	95±5	acr-12		
uf94	78±6	acr-12		
uf94	80±10	acr-12		

uf95	100	acr-12
uf95	85±5	acr-12
uf95	100	acr-12
uf117	100	acr-12
uf117	85±5	acr-12
uf117	90±10	acr-12

Gray shading denotes available alleles used as reference

^{*}denotes percentage of animals paralyzed after 120 minutes in the presence of 200 μM levamisole

[†]Alleles listed multiple times indicated duplicate isolates of the same allele. Forty-four additional levamisole-resistant mutants (<20% paralyzed) were isolated but not characterized further.