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Supplemental Materials and Methods 

Data acquisition 

Resting state fMRI. Our brain is a complex dynamic system in which information is continuously 

processed and transferred between brain regions with highly correlated functional dynamics (Sporns 

et al., 2000; Sporns et al., 2004). These coherent dynamics are believed to reflect the existence of 

functional connections between these regions. Functional connectivity is defined as the temporal 

coherency between neuronal brain signals of anatomically separated brain regions (Aertsen et al., 

1989; Friston et al., 1993) and is widely investigated by measuring the correlation between resting-

state Blood Oxygen Level Dependent functional Magnetic Resonance Imaging time-series (Biswal 

et al., 1995; Cordes et al., 2000; Lowe et al., 2000; Beckmann et al., 2005; Achard et al., 2006; 

Damoiseaux et al., 2006; Van den Heuvel et al., 2008a).  

 During rest, brain regions produce a vast amount of spontaneous neuronal activity (Raichle et 

al., 2001; Raichle and Snyder, 2007) which can be measured with these resting-state BOLD fMRI 

recordings (Biswal et al., 1995; Salvador et al., 2005b; Damoiseaux et al., 2006). Of special interest 
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are the low frequency oscillations (~0.01 - 0.1Hz) of the fMRI time-series measured during rest. 

These slow moving temporal patterns show a high level of correlation between multiple 

anatomically separated brain regions (Biswal et al., 1995; Cordes et al., 2000; Lowe et al., 2000), 

especially between brain regions that are involved in the same function, for example primary motor, 

visual and auditory regions. The exact neurophysiological basis of these low frequency correlations 

is not yet fully understood. There is an ongoing debate about whether resting-state BOLD 

correlations predominantly originate from respiratory and cardiac oscillations (Wise et al., 2004; 

Shmueli et al., 2007) or whether these correlating time-series are related to true synchronization of 

the neuronal activation patterns of brain regions, observed through a hemodynamic response 

function (Gusnard et al., 2001; Greicius et al., 2003; Buckner and Vincent, 2007). This latter view 

is supported by recent observations that report that resting state BOLD time-series show a high 

correlation with concurrent fluctuations in neuronal spiking, suggesting a direct link between 

resting-state time-lag BOLD signals and intrinsic neuronal activity (Nir et al., 2008; Shmuel and 

Leopold, 2008). Furthermore, as mentioned, most of these coherent BOLD patterns have been 

found between regions of known functional networks, for example the motor and visual network 

and known high order cognitive networks (Biswal et al., 1995; Biswal et al., 1997; Cordes et al., 

2001; Beckmann et al., 2005; Salvador et al., 2005a ; Damoiseaux et al., 2006; Van den Heuvel et 

al., 2008a). In addition, resting state BOLD time-series of cortical regions have been reported to be 

mainly dominated by lower frequencies (<0.1 Hz), with only a minimal contribution of higher 

cardiac and respiratory oscillations (Cordes et al., 2000; Cordes et al., 2001). In this context, it is 

believed that the observed coherence between resting-state BOLD fluctuations of anatomically 

separate regions do, at least in part, originate from synchronized intrinsic neuronal activity of these 

regions and reflect a high level of functional connectivity between these brain areas (Biswal et al., 

1995; Gusnard et al., 2001; Fox and Raichle, 2007; Greicius et al., 2008). 
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Subjects. 19 healthy subjects without a psychiatric history (age mean/std : 29/7.8 ; gender: 14 male, 

5 female) participated in this study after providing written informed consent as approved by the 

medial ethics committee for research in humans (METC) of the University Medical Center Utrecht, 

The Netherlands.  

 

Intelligence scores. The Intelligence Quotient (IQ) of the participants was measured with the Dutch 

version of the Wechsler Adult Intelligence Scale III (WAIS-III) test. The WAIS test gives a 

standardized full scale IQ score based on a number of subtests that assess the level of verbal and 

non-verbal knowledge and reasoning of the participants. Each sub-test of the WAIS provided a raw 

score and from these raw-scores the Verbal Comprehension Index (VCI), Working Memory Index 

(WMI), Perceptual Organization Index (POI) and Processing Speed Index (PSI) index scores, 

Verbal IQ (VIQ), Performance IQ (PIQ) and Full-Scale IQ (FIQ) were derived. Table 1 and 2 of the 

main text describe the index-scores, VIQ, PIQ and FIQ scores (Table 1) together with the 

correlations between the index-scores and IQ-scores (Table 2). 

 

Resting state paradigm. During the resting-state fMRI scans, the scanner room was darkened. 

Subjects were instructed to relax with their eyes closed and to think of nothing in particular without 

falling asleep, which was verified directly after the 8 minute scanning session. None of the 19 

included subjects reported to have fallen asleep or to be close to falling asleep. 

 

MR acquisition. Resting-state functional Magnetic Resonance Imaging time-series were acquired 

on a 3 Tesla Phillips Achieva Medical scanner (Philips Medical Systems, Best, The Netherlands) at 

the University Medical Center Utrecht, The Netherlands. Resting-state Blood Oxygenation Level 

Dependent (BOLD) signals were recorded during a period of 8 minutes using a fast fMRI sequence 

(3D PRESTO (Golay et al., 2000; Van den Heuvel et al., 2008a), acquisition parameters: TR/TE 

22ms/32ms using shifted echo, flipangle of 9 degrees; SENSE p/s reduction 2/2; a dynamic 
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scantime of 0.5 sec, 1000 timeframes, total duration 8 minutes; FOV 256x256 mm, voxelsize 

4x4x4mm, 32 slices covering whole brain). A high temporal acquisition of 2 Hz was used to 

minimize aliasing effects of high frequent respiratory and cardiac oscillations (respectively ~0.3 Hz 

and ~0.9-1.0 Hz) into the low resting-state frequencies of interest (0.01 - 0.1 Hz). PRESTO fMRI 

scans have a low anatomical contrast in comparison with a T1 image. Therefore, directly after the 

functional resting-state time-series an additional PRESTO scan with similar scanning parameters, 

but with a higher anatomical contrast was acquired by increasing the flipangle to 25 degrees. This 

additional high contrast PRESTO scan was made to improve the co-registration of the functional 

time-series with the T1 image. Directly after the resting-state time-series, a T1 weighted image was 

acquired for anatomical reference (3D FFE, acquisition parameters: TR/TE 10ms/4.6ms, SENSE 

p/s reduction 1.7/1.4; FOV 256x256 mm, voxelsize 0.75x0.75x0.8mm, 200 slices). 

  

Preprocessing. All fMRI preprocessing steps were done with the SPM2 software package 

(http://www.fil.ion.ucl.ac.uk). First, small head motion effects during the resting experiment were 

corrected by realigning the fMRI time-series to the last functional scan. Registration to the last 

functional scan was used to maximize the spatial overlap of the fMRI time-series with the high 

anatomical contrast functional scan. Second, both the functional time-series and anatomical T1 scan 

were coregistered to the high contrast functional scan, to provide spatial alignment between the 

resting-state time-series and the anatomical image. Third, an automatic cortical segmentation 

procedure was performed on the T1 image to select all cortical and sub-cortical gray matter voxels 

of the brain. Cortical segmentation was performed with the freely available Freesurfer software 

package (http://surfer.nmr.mgh.harvard.edu/). Cortical segmentation maps were resliced to a 

4x4x4mm resolution to overlap with the resting-state time-series. Fourth, the individual functional 

time-series and matching cortical segmentation map were normalized to standard MNI 305 space, 

using the parameters of the normalization of the T1 image to the MNI 305 T1 brain (Collins et al., 

1994). Fifth, the low resting-state frequencies of interest were selected by filtering the resting-state 
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time-series with a finite impulse response (FIR) filter with a bandwidth of 0.01 - 0.1 Hz. The 

relatively high sampling-rate of the used resting-state fMRI protocol (i.e. 2 Hz) enabled the proper 

sampling of cardiac and respiratory signals. As a result, band-pass filtering minimized the influence 

of low frequency MR scanner noise (e.g. slow scanner drifts, typical < 0.01 Hz) and high frequent 

cardiac or respiratory oscillations up to 1 Hz (> 0.1 - 1 Hz) (Cordes et al., 2001).  

 

Graph analysis 

The organization of the functional connections of the brain network was examined using a graph 

theoretical approach, as validated earlier (Van den Heuvel et al., 2008b). All steps of the graph 

analysis are illustrated in Supplemental Figure 1 and described in detail below. In summary, the 

graph analysis involved the construction of a functional connected brain network G for each 

individual dataset, consisting of all gray matter sub-cortical and cortical voxels and connections 

between all functionally linked voxels. From these functional networks, key graph characteristics 

were computed that describe the architecture of the network, including the clustering-coefficient C, 

providing information about the level of local connectedness of the network and characteristic path 

length L, which provides information about the level of global communication efficiency of a 

network (Watts and Strogatz, 1998; Latora and Marchiori, 2001). C and L are typically compared to 

the clustering-coefficient and characteristic path length of comparable random 

organized networks, with the same number of connections and the same distribution of connections 

as G. For each G, up to 20 comparable random networks were formed and the overall and 

were defined as the average clustering-coefficient and characteristic path length of these 

random organized networks. The ratios gamma, defined as C / and lambda, defined as L / 

 were computed and averaged over the group of subjects to verify a small-world 

organization of functional brain networks (Watts and Strogatz, 1998). Next, to examine the 

association between the organization of the brain network and inter-subject differences in 

intelligence the gamma and lambda scores of the individual brain networks were correlated with the 
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individual IQ scores of the participants. Finally, to point out which nodes in the brain network 

showed the strongest relationship between network organization and intelligence, voxel-wise IQ 

correlation maps were computed, pointing out those nodes (i.e. voxels) of the functional brain 

network that showed the strongest correlation with IQ scores over the group of subjects. A detailed 

step-by-step description of the graph analysis is given below and is illustrated in Supplemental 

Figure 1. 

 

Graph construction. For each individual functional dataset, a connectivity graph G = (V,E) was 

formed, with V the collection of N grey matter voxels and E the collection of edges (also called 

connections) between the voxels. The number of points N of the constructed functional brain graph 

varied around 9500 across the groups of subjects. The zero-lag temporal correlations between all 

possible voxel-pairs (i.e. ~9500x9500) was computed, reflecting the level of inter-voxel functional 

connectivity (Supplemental Figure 1a). Voxel-wise correlations were stored as a correlation 

matrix M with cell M(i,j) holding the zero-lag temporal correlation between the fMRI time-series of 

voxel i and voxel j (Supplemental Figure 1b). A binary valued matrix B was formed by 

thresholding M by a threshold T, putting all cells of M to 1 that exceeded the threshold and all cells 

to 0 that did not exceed this threshold (Supplemental Figure 1c). Thresholding M directly resulted 

in the formation of an unweighted unidirectional graph G, with V reflecting all sub-cortical and 

cortical points (i.e. voxels) and E the functional connections between the voxels. In this study, T 

was varied for multiple settings between 0.05 and 0.5, with steps of 0.05. Increasing T too much 

would eventually lead to disconnecting a number of voxels from G and this could have an effect on 

the computed graph characteristics (i.e. clustering-coefficient C and characteristic path length L). 

Therefore, the maximum T was set to 0.5, to minimize the number of disconnecting nodes in G and 

to ensure that the largest interconnected cluster included more than 95% of the number of nodes in 

G over the group of subjects (Van den Heuvel et al., 2008b). 
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Network characteristics. Next, the clustering-coefficient C and characteristic path length L of G 

were computed (Supplemental Figure 1g) to examine the overall connectivity architecture of the 

functional brain network. 

 The clustering-coefficient  of node i expresses the level of connectedness of the direct 

neighbors of node i.  gives information on how strong node i and its direct neighbors form a 

clustered sub-network within the total network.  of voxel i was defined as (Watts and Strogatz, 

1998; Sporns et al., 2004):  

         (1) 

with  the sub-graph of neighbors of voxel i and  the number of edges of voxel i. 

In words,  is defined as the ratio of the number of edges between its neighbors of voxel i and the 

total number of possible edges between the neighbors. In turn, the overall clustering-coefficient C 

of G is defined as the average of  over all voxels i in G (Watts and Strogatz, 1998; Sporns et al., 

2004) :  

          (2)

 

The definition of  (formula 1) is undefined when the number of neighbors of node i is zero or 

one, which happens when node i is disconnected from the graph or when node i is a so-called leaf 

node (i.e. when node i has only one connection). In that case  was defined as 0. However, as 

mentioned by Kaiser the contributing effect of disconnected nodes and leaf nodes on C is likely to 

increase when the to be examined network becomes more and more sparse, biasing C to a mixture 

of neighbourhood clustering and edge density (Kaiser, 2008). In our study, the effect of the 

disconnected nodes and leaf nodes on C was believed to be minimal as the number of disconnected 
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nodes was kept to a absolute minimum by using low cut-off thresholds T. To verify this minimal 

effect, an alternative definition of C was used in which all nodes with less than two connections (i.e. 

disconnected nodes and leaf nodes) were removed, before computing C (Kaiser, 2008). As expected 

due to the low number of disconnected nodes and leaf nodes in G (due to the relative low T), this 

did not change our findings. This overlaps with our previous findings on the influence of 

disconnected nodes in functional brain networks with high T (Van den Heuvel et al., 2008b).  

 Furthermore, the characteristic path length L of a graph is defined as the averaged minimal 

distance (in number of edges) between each possible node pair in the graph. The average 

characteristic path length L expresses how well the graph is connected globally. Formally, L is 

given by: 

 
       (3)

 

with distance d(i,j) the minimal number of edges that have to be crossed to travel from node i to 

node j, for i and j in G and N the number of nodes in G. Before computing L, possible disconnected 

nodes were removed from G. Due to the low number of disconnected nodes in G this was believed 

to have only a very minimal effect on the computation of L (Van den Heuvel et al., 2008b).  

 Taken together, the clustering-coefficient C and characteristic path length L of a graph 

express key characteristics of the examined network. C and L indicate whether a network is 

connected in a regular, small-world or random fashion (Watts and Strogatz, 1998) (Supplemental 

Figure 2). Regular networks show a high level of clustering C and a high characteristic path length 

L (Supplemental Figure 2a). This in contrast to random networks, which typically show a low 

level of clustering and a short average characteristic path length, reflected by low C and low L 

(Supplemental Figure 2c). The high C of a regular network indicates that functional neighbors 

within the network are high connected, but the high L indicates that it takes a high number of steps 

to travel to more distant nodes in the network. In contrast, random networks have a more global 

character, indicated by the low path length L and the low C. The low C indicates a limited 

L = 1
N(N −1)

d(i, j)
i≠ j ,i, j ∈G∑



9 

 

formation of neighborhood connectedness and the low L indicates that on average the number of 

edges that have to be crossed to another point in the graph is relatively low. Regular and random 

networks are each the end points of a network spectrum. Defining a probability p that a connection 

from a fully regular network is randomly rewired will shift a network from a regular organization to 

a more random organization with increasing p (Watts and Strogatz, 1998). Increasing the rewiring 

probability p a network becomes more and more randomly organized (Supplemental Figure 2). 

So-called small-world networks have an intermediate organization, showing a high level formation 

of sub-graphs in the network, but still with an average short characteristic path length of around the 

same length as the characteristic path length of random organized networks, ensuring an optimal 

level of global connectivity (Watts and Strogatz, 1998; Latora and Marchiori, 2001). As such, 

small-world networks typically show a clustering-coefficient that is much higher than that of a 

random network, but still with a characteristic path length that is around the same order of that of a 

random network. More formally, a network has a small-world organization when C >> and 

L ~ (Watts and Strogatz, 1998), with and defined as the clustering-

coefficient and characteristic path length of a comparable random network of similar size 

(Sporns et al., 2004; Sporns, 2006) and connectivity distribution (Sporns and Zwi, 2004; Stam and 

Reijneveld, 2007).  

 The local and global connectivity properties of a network are typically expressed by the ratio 

gamma between C and and lambda  between L and  (Supplemental Figure 

1h). Small-world networks have a gamma of >1 and lambda of ~1 (Sporns and Zwi, 2004; Stam 

and Reijneveld, 2007).  and  are formally given by: 

          

(4)
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(5)

  

 Besides the graph characteristics C, L, gamma and lambda also the average number of 

connections k of each G was examined as an indication of the overall level of connectivity of the 

individual functional brain network (Van den Heuvel et al., 2008b). 

 

Formation of comparable random networks. For normalization of C and L, for each thresholded 

G a number of h comparable random graphs  were formed, by randomizing the binary 

connectivity matrix B (Supplemental Figure 1e). It has been stated that for a correct statistical 

comparison of two networks the connectivity distribution of the two networks have to be similar 

(Sporns and Zwi, 2004). However, theoretical random networks have a Poisson shaped degree 

distribution and this is likely not to be the case for high spatial voxel-based functional brain 

networks as these networks have been suggested to have a scale-free organization, characterized by 

degree distribution that follows a power-law function (Eguiluz et al., 2005; Van den Heuvel et al., 

2008b). Therefore, the formation of each random graph  was based on the original binary 

connectivity matrix B, using the individual connectivity matrix as a starting point for the 

randomization process. For each node i in the graph all connections of node i were randomly 

reconnected to random nodes in the network and made bidirectional, keeping the total number of 

connections of node i similar to the number of connections in the binary functional connectivity 

matrix B (Van den Heuvel et al., 2008b). This resulted in a random graph with a total 

degree and degree distribution comparable to that of the individual functional connectivity graph for 

each of the to be examined B (Supplemental Figure 1f).  
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 For each of the resulting the clustering-coefficient  and characteristic path 

length  were computed (Supplemental Figure 1g). Next, and  were 

computed as the average of the computed graph characteristics of the h random graphs: 

 

        

(6)

 

  

        

(7)

 

 The number of random networks h was set to 20 for 0.40 ≦ T ≦ 0.50. For computational 

reasons, h was set to 10 for 0.20 ≦ T < 0.40 and to 5 for T < 0.20, as for lower T the connectivity 

matrices and random matrices become less sparse and therefore the computational time increases to 

compute the graph characteristics. Across all T this procedure resulted in the evaluation of 110 

comparable random graphs per individual connectivity dataset. In total, across all 19 subjects and 

across all settings of T this resulted in the evaluation of 2280 networks (= 19 x (10 connectivity 

graphs + 110 random graphs)) of size NxN, with N all the number of all sub-cortical and cortical 

voxels of ~9500. 

 

Group averaged graph characteristics. For each setting of T (ranging from 0.05 to 0.5, steps of 

0.05), the performed graph analysis (Supplemental Figure 1a-h) resulted in clustering-coefficient 

C, characteristic path length L, comparable , and gamma and lambda values for 

each of the individual functional connectivity brain networks G. To examine an overall possible 

small-world organization of the functional brain, the graph characteristics were averaged over the 

group of 19 subjects.  
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Association between graph characteristics and IQ. To examine a possible association between 

the overall architecture of the functional brain network and intelligence, individual gamma and 

lambda values were correlated with individual IQ scores (Supplemental Figure 1i). Gamma and 

lambda are directly related to the level of global and local communication efficiency of a network 

(Latora and Marchiori, 2001). A high gamma reflects a high level of local connectedness in the 

network, ensuring a high level of local communication efficiency. In addition, a low lambda reflects 

an average short characteristic path length between any two nodes in the network, expressing a high 

level of global communication efficiency within the network.  

 For the small-world organized networks G of 0.40 ≦ T ≦ 0.50, the association between the 

individual IQ scores and the computed graph characteristics gamma and lambda was computed. 

Correlations between gamma/lambda values and IQ scores were corrected for possible age effects 

by regressing out age out of the gamma and lambda scores.  

Correlation coefficient maps. To point out which regions in the functional brain network showed 

the strongest association between path length and IQ, an exploratory post-hoc analysis was 

performed, in which voxel-wise correlation-coefficient maps for the nodes in G of T = 0.45 were 

computed (Supplemental Figure 1k). This was done in a 3-step procedure. Step 1. For each 

individual dataset, for each node i in the individual functional brain network G, voxel i (i.e node i) 

was flagged with its normalized path length . This resulted in an individual spatial normalized path 

length map. Voxel-wise path length values were expressed as individual normalized path length 

values, to correct for mean effects on the individual path length scores. The normalized path length 

of node i in the network was computed as:  

 

        (8) 

 

normalized _ path _ lengthi = Li

Lrandom
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In this way, the normalized path length of node i was computed in a similar manner as the 

computation of overall lambda. Step 2. To increase cross-subject overlap between the individual 

cortical segmentation maps, individual Lmaps were dilated, by flagging voxel j with the mean 

normalized path length of voxels directly touching voxel j. Step 3. For all voxels that overlapped 

the group of subjects, the normalized path length of each node i in the functional brain network was 

correlated with individual IQ scores. An exploratory threshold of p < 0.05 [uncorrected for multiple 

comparisons] was used to examine which regions in the brain showed a significant correlation 

between normalized path length and IQ. To minimize the number of false positives, only clusters 

that consisted of 8 or more spatially adjacent voxels of p < 0.05 were considered as significant. To 

examine the effect size of the regions in the brain network that showed the strongest relationship 

between normalized path length and IQ, a correlation coefficient rmap was formed by flagging all 

significant nodes with their matching correlation coefficient r-values. Figure 3 of the main text 

shows the group correlation-coefficient rmap of T = 0.45.  

 

 Supplemental results 

Characteristic path length and clustering-coefficient. The group averaged L, , C, 

, lambda and gamma are shown in Figure 1 of the main text and clearly indicate a small-

world organization of functional brain networks for T ≥ 0.3. The characteristic path length L was 

found not to be different from  (panel a) and for T ≥ 0.3 the clustering-coefficient C turned 

out to be >>  and for T ≦ 0.5 (panel b) [two-sample t-test, df = 36, all p < α of 0.01, 

Bonferroni corrected for multiple comparisons of T]. This was reflected by lambda ~1 T ≦ 0.5 

(panel c) and by gamma >1 for T ≥ 0.3 [one-sample t-test, df =18, p < 0.01, Bonferroni corrected] 

(panel d). These results clearly suggest a small-world organization of the functional human brain, 

supporting the findings of recent studies showing a small-world organization of the brain network 

on both a regional (Sporns and Zwi, 2004; Stam, 2004; Achard et al., 2006; Achard and Bullmore, 

2007; Sporns et al., 2007) and a voxel scale (Eguiluz et al., 2005; Van den Heuvel et al., 2008b).  
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Association of graph characteristics and IQ. To examine the relationship between the 

connectivity architecture of the brain network and inter-subject variation in intelligence, the 

individual graph characteristic lambda and gamma scores were correlated with the individual IQ 

scores for G within the small-world range of 0.3 ≦ T ≦ 0.5. Interestingly, a negative association 

was found between lambda and IQ, suggesting a positive relationship between the global level of 

connectivity in the brain network and intelligence [linear regression, df=18; T = 0.45, r = -0.54, p = 

0.010 (Figure 2a); T = 0.5, r = -0.57, p = 0.017 (Figure 2b), which is significant considering a α of 

0.01 after Bonferroni correction for multiple comparisons of T; regressions corrected for age]. No 

association was found between the level of local clustering and intelligence, as reflected by the lack 

of association between gamma and IQ scores. The associations between overall lambda and gamma 

and IQ are shown in Figure 2 of the main text and in Supplemental Figure 3a-f. Furthermore, to 

examine whether the individual overall number of connections k of the brain network were related 

to intelligence, k was correlated with the IQ scores in a similar manner as the lambda and gamma 

scores. No association was found between k and IQ scores (corrected for age, Supplemental 

Figure 3h-j). Considering the clear association between IQ and lambda, this suggests that 

intelligence is not related to the absolute number of connections of our brain network or how these 

connections are organized at the local level, but more related to how efficient the global 

connections of our brain are organized. 

 

Correlation coefficient rmaps of normalized path length with IQ. For the small-world brain 

network G of T = 0.45 the individual computed normalized path length values of each node i (i.e. 

voxel i) of the network were correlated with the individual IQ scores seperately. The resulting 

correlation coefficient rmap is shown in Figure 3 of the main text. The strongest associations 

between IQ and normalized path length were found in medial frontal (BA 9/10, r = -0.75, p < 0.001 

age corrected, yellow box), precuneus/posterior anterior cingulate cortex (BA 7, r = -0.55, p < 0.02 
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age corrected, orange box), and inferior parietal cortex (BA 39/40, r = -0.72, p < 0.001 age 

corrected, red box). These findings suggest that increased intelligence may be related to increased 

efficiency of frontal and parietal regions to access information of other sub-networks in the 

functional brain network. This suggest that inter-subject differences in intelligence may be related 

to how efficient high order frontal and parietal regions can integrate information of the other 

functional sub-networks within the brain network. Also regions overlapping left superior temporal 

[BA 22/40, r= -0.69, p = 0.014, df = 18] and left inferior frontal [BA 44/45, r = -0.68, p = 0.012, df 

= 18] showed a significant negative correlation between normalized path length and full scale IQ. 
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Supplemental Figure Legends 

Supplemental Figure 1. Graph analysis procedure. Figure illustrates the individual steps of the 

performed graph analysis. For each individual resting-state fMRI dataset a graph G = (V,E) was 

formed with V the collection of sub-cortical and cortical voxels and E the collection of connections 
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between all voxels. First, the level of functional connectivity between voxel i and j was computed 

by correlating the resting-state BOLD time-series of voxel i and j (panel a) and placed in a 

connectivity matrix M (panel b). Next, M was threshold by threshold T, setting all connections to 1 

that did reach T and all connections to 0 that did not reach T, transforming M into a binary valued 

connectivity matrix B (panel c). B directly reflected an unidirectional unweighted graph G, 

representing the functionally connected brain network (panel d). B was randomized resulting in 

 (panel e), which represented a randomized graph  (panel f). In total, h random 

graphs were formed, with h set to 20 for 0.40 ≦ T ≦ 0.5, to 10 for 0.2 ≦ T < 0.40 and to 5 for T < 

0.2. Of all formed graphs G and , the clustering coefficient and characteristic path length 

were computed (panel g).  and were computed by averaging the clustering 

coefficients and path lengths of the h random graphs (panel g). Next, gamma (i.e. C/  ) and 

lambda (i.e L/ ) were computed (panel h) and associated with IQ (panel i) to examine the 

association between intelligence and the connectivity architecture of the functional brain network. 

Finally, to point out which brain regions showed the strongest association between normalized path 

length and IQ, the normalized path length of each node i of G was correlated with IQ over the 

group of subjects (panel j and k). 

 

Supplemental Figure 2. Regular, small-world and random networks. Figure illustrates the 

relationships between regular, small-world and random networks (Watts and Strogatz, 1998). On 

the left side a regular network is shown, with vertices (blue/red points) and the connections (black 

lines) between the vertices. Regular networks have a high level of local clustering (i.e. high C) but 

an average long travel distance between all the nodes (i.e. a high characteristic path length L). The 

high C and high L indicate that a regular network has a high level of local organization. Let p be a 

probability that the connection between point i and point j is randomly rewired. When p = 1, all 

connections in the network are randomly rewired, resulting in a fully random network (network 
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shown at the right side). In contrast to regular networks, random networks have a more global 

character, indicated by a low level of clustering (i.e. low C ) and a low average travel distance (i.e. 

low L). Interestingly, Watts and Strogatz (Watts and Strogatz, 1998) showed that for a low rewiring 

probability p, a so-called small-world network is formed. Small-world networks have an 

intermediate character, showing a high level of clustering (i.e. high C), but still with a short 

characteristic path length (i.e. low L) similar to that of a random network (network shown in the 

middle). 

 

Supplemental Figure 3. Associations between characteristic path length lambda, clustering-

coefficient gamma and number of connections k with IQ. For networks within the clear small-

world range a significant correlation was found between the overall normalized characteristic path 

length lambda and IQ [linear regression, df=18; T = 0.45, r = -0.54, p = 0.010 (panel b); T = 0.5, r = 

-0.57, p = 0.017 (panel c), corrected for age], suggesting a positive association between the level of 

global communication efficiency within the functional brain network and intelligence. No 

significant association was found between the level of local clustering gamma and IQ (panel d,e, f) 

nor the number of connections k and IQ (Supplemental Figure 3 g,h,i). Taken the results of lambda, 

gamma and k together, our findings suggest that intelligence is not directly related to the overall 

number of connections of the brain network, or how these connections are organized at the local 

level within the many functional sub-networks of our brain, but rather to how efficient information 

is integrated globally between different regions of the brain. These results indicate that smarter 

brains have a more direct and therefore more efficient access to information across the global brain 

network. 

 

Supplemental Figure 4. Association between characteristic path length lambda and IQ sub-

scales. Upper panel shows for the cut-off threshold T = 0.45, the significant association between 

full scale IQ and normalized characteristic path length lambda of the functional brain network 
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[linear regression, p = 0.010, df=18, corrected for age]. Middle panels show the association between 

Verbal IQ (VIQ) and Performance IQ (PIQ) and characteristic path length. PIQ was found to be 

significantly correlated with lambda [linear regression, p = 0.004, df=18, corrected for age]. Lower 

panels show the association between lambda and VCI, WMI, POI and PSI index scores. Lambda 

was found to be significantly negatively associated with POI [linear regression, p = 0.004, df = 18, 

corrected for age]. 

 

Supplemental Figure 5. Regional specific patterns between normalized path length of each 

node and IQ subscales. Figure shows the regional specific patterns between the path length of each 

node and the full scale IQ, Verbal IQ (VIQ), Performance IQ (PIQ), Verbal Comprehension Index 

(VCI), Working Memory Index (WMI), Perceptual Organization Index (POI) and Processing Speed 

Index (PSI), plotted on a 3D rendering of the average T1 image over the group of subjects. As 

expected from the association between IQ sub-scores and the overall characteristic path length 

lambda (Supplemental Figure 4) the strongest effects were found on PIQ and POI. Shown are 

correlation coefficient values of those voxels that had a significant negative association between IQ 

sub-scores and L [T = 0.45, p < 0.05 uncorrected for multiple comparisons, df=18, corrected for 

age].  

 


