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Mesoaccumbal and nigrostriatal projections are sensitive to stress, and heightened stress sensitivity is thought to confer risk for neuro-
psychiatric disorders. Serotonin 2C (5-HT2C ) receptors mediate the inhibitory effects of serotonin on dopaminergic circuitry in experi-
mental animals, and preclinical findings have implicated 5-HT2C receptors in motivated behaviors and psychotropic drug mechanisms.
In humans, a common missense single-nucleotide change (rs6318, Cys23Ser) in the 5-HT2C receptor gene (HTR2C) has been associated
with altered activity in vitro and with clinical mood disorders. We hypothesized that dopaminergic circuitry would be more sensitive to
stress in humans carrying the Ser23 variant. To test this hypothesis, we studied 54 healthy humans using positron emission tomography
and the displaceable D2 /D3 receptor radiotracer [ 11C]raclopride. Binding potential (BPND ) was quantified before and after a standardized
stress challenge consisting of 20 min of moderate deep muscular pain, and reduction in BPND served as an index of dopamine release. The
Cys23Ser variant was genotyped on a custom array, and ancestry informative markers were used to control for population stratification.
We found greater dopamine release in the nucleus accumbens, caudate nucleus, and putamen among Ser23 carriers, after controlling for
sex, age, and ancestry. Genotype accounted for 12% of the variance in dopamine release in the nucleus accumbens. There was no
association of Cys23Ser with baseline BPND. These findings indicate that a putatively functional HTR2C variant (Ser23) is associated with
greater striatal dopamine release during pain in healthy humans. Mesoaccumbal stress sensitivity may mediate the effects of HTR2C
variation on risk of neuropsychiatric disorders.

Introduction
Disturbances of dopaminergic projections from midbrain to
striatum have been implicated in mood disorders, psychotic
disorders, and addictions. Furthermore, dopaminergic cir-
cuitry is sensitive to stress in experimental animals (Berton et
al., 2006; Cao et al., 2010; Ungless et al., 2010; Cabib and
Puglisi-Allegra, 2012) and humans (Scott et al., 2006; Borsook
et al., 2010; Admon et al., 2012), suggesting that this system
may mediate the effects of stress on psychiatric disease in vul-
nerable individuals. Given the heritability of these diseases, a
better understanding of their origins may come from identi-
fying genetic variants that influence dopaminergic circuitry
and disease vulnerability.

Serotonin 2C (5-HT2C) receptors regulate dopaminergic cir-
cuitry in experimental animals. Serotonin activates 5-HT2C re-
ceptors on midbrain interneurons and dopamine neurons,
suppressing local dopaminergic cell activity (Eberle-Wang et al.,
1997; Di Giovanni et al., 2001; Berg et al., 2008). Activation of
5-HT2C receptors reduces striatal dopamine release, while antag-
onists of 5-HT2C receptors increase striatal dopamine (Berg et al.,
2008; Di Matteo et al., 2008; Egerton et al., 2008). Pharmacologic
or genetic manipulations of 5-HT2C receptors alter locomotor
responses, the reinforcing value of psychostimulants, food intake
and obesity, and the behavioral effects of antidepressants and
antipsychotics (Tecott et al., 1995; Rocha et al., 2002; Cannon et
al., 2004; Giorgetti and Tecott, 2004; Abdallah et al., 2009).

5-HT2C receptors have been implicated in stress, anxiety, and
pain. Manipulation of 5-HT2C receptors in experimental animals
causes anxiety and alters behavioral and neuroendocrine re-
sponses to various forms of stress (Kahn and Wetzler, 1991;
Bagdy et al., 2001; Burghardt et al., 2007; Heisler et al., 2007;
Hawkins et al., 2008; Christianson et al., 2010; Strong et al., 2011).
Several reports have implicated 5-HT2C receptors in pain-stress
and spinal mechanisms of neuropathic pain (Jeong et al., 2004;
Obata et al., 2004; Hawkins et al., 2008; Nakae et al., 2008; Liu et
al., 2010; Brasch-Andersen et al., 2011). How these receptors
might be involved in the response to pain in central stress-sensitive
circuitry such as the mesolimbic pathway remains unclear.

5-HT2C receptors have been linked to neuropsychiatric disor-
ders (Drago and Serretti, 2009). The single nucleotide variant
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Cys23Ser (rs6318) in the human 5-HT2C receptor gene (HTR2C)
has been a focus of attention because a serine is substituted for a
cysteine in the extracellular N terminus of the receptor, poten-
tially altering the protein’s structure or stability by eliminating a
disulfide bond (Lappalainen et al., 1995). The Ser23 variant has
been associated with greater constitutive activity, lower affinity,
and altered resensitization in some assay systems (Lappalainen et
al., 1995; Okada et al., 2004; Fentress et al., 2005; Walstab et al.,
2011). A genetic association study linked Ser23 with recurrent major
depression and bipolar disorder (Lerer et al., 2001).

We hypothesized that stress-sensitivity of the dopamine sys-
tem would be greater among individuals carrying the HTR2C
Ser23 variant. To test this possibility, we genotyped healthy hu-
mans who participated in a pain challenge—a controlled physical
and emotional stressor that is valid across species—during positron
emission tomography (PET) with the D2/D3 receptor tracer
[11C]raclopride.

Materials and Methods
Subjects. Fifty-four healthy, right-handed adults (60% female; mean age,
27 years; SD, 5 years; range, 19 – 40 years) completed PET and provided
blood for genetic analyses. PET data from 17 of these subjects have been
reported previously (Scott et al., 2006) and are reanalyzed here. Partici-
pants had no personal history of major medical illness or psychiatric
disorder, including substance use disorders. They were not taking med-
ications with CNS activity (including birth control pills and other exog-
enous hormones) and they were instructed to abstain from all
psychoactive substances for 24 h before the study. Women were studied
in the follicular phase of the menstrual cycle (days 4 –10). Written in-
formed consent was obtained and all procedures were approved by the
Institutional Review Board and Radioactive Drug Research Committee
at the University of Michigan.

Positron emission tomography. Striatal D2/D3 receptor availability was
quantified with PET and the displaceable radiotracer [ 11C]raclopride, as
described previously (Scott et al., 2006). In brief, [ 11C]raclopride was
synthesized at high specific activity (�2000 Ci/mmol) by reaction of
O-desmethyl-raclopride with [ 11C]methyl-triflate. Fifty percent of the
radiotracer dose was administered as a bolus and the remainder as a
continuous infusion to more rapidly achieve constant tracer levels (total
mean � SD administered, 15.0 � 2.2 mCi). Under these conditions,

equilibrium across kinetic compartments is
achieved after �35 min (Carson et al., 1997).
PET scans were acquired with a Siemens HR�
scanner in 3-D mode, with a reconstructed
full-width-at-half-maximum resolution of 5.5
mm in-plane and 5.0 mm axially. Twenty-eight
image frames of increasing duration were ac-
quired over 90 min.

The stress challenge consisted of moderate,
sustained, muscular pain, as described previ-
ously (Scott et al., 2006). A fine-gauge needle
was inserted into the left masseter muscle be-
fore the scan. During the baseline period
(0 – 45 min after radiotracer administration)
isotonic saline (0.9%) was infused, which in all
cases caused no pain. Participants were not
told at what point during the scan pain would
begin, so an expectation of pain was created
during the baseline period. Beginning at 45
min, infusion of hypertonic saline (5%) main-
tained a steady level of pain for 20 min. Pain
intensity was rated every 15 s from 0 (no pain)
to 100 (most intense pain imaginable) using a
visual analog scale, and a computer controller
adjusted the infusion to maintain the pain near
a target of 40 visual analog units. Pain sensitiv-
ity was calculated as the average visual analog
intensity rating divided by the total volume of

infused hypertonic saline. Immediately after the pain challenge, partici-
pants completed the McGill Pain Questionnaire (MPQ) (Melzack and
Torgerson, 1971), which reflects an individual’s overall subjective expe-
rience, as measured by weighted pain descriptors. Subjective emotional
state was assessed before the challenge (baseline) and after the challenge
using the Positive and Negative Affect Schedule (PANAS) (Watson and
Clark, 1994).

Dynamic image data were transformed voxelwise into two sets of
images: a tracer transport measure (K1 ratio) and a receptor-related
measure, the nondisplaceable binding potential (BPND) relative to a cer-
ebellar reference region (Carson et al., 1997; Watabe et al., 2000; Love et
al., 2012). BPND measures were calculated for the period before pain
(35– 45 min after tracer infusion) and during and immediately after pain
(60 – 80 min). Reduction in BPND during the pain-stress challenge is
thought to reflect release of dopamine and competition between radio-
tracer and endogenous ligand (Laruelle, 2000), but changes in dopamine
receptor concentration or affinity cannot be ruled out with this method.
Images were spatially normalized to standardized space (Montreal Neu-
rological Institute, MNI). Mean BPND values were extracted from regions
of interest (shown in Fig. 1 B) using the MarsBaR toolbox (Brett et al.,
2002). Nucleus accumbens regions were defined by two spheres of 5 mm
radius centered at MNI coordinates �10, 10, �10. Caudate and putamen
regions were based on the Talairach atlas as implemented in the Wake
Forest University PickAtlas toolbox (Lancaster et al., 2000; Maldjian et
al., 2003).

Genetics. Approximately 6 ml of whole blood was collected during the
PET scan. DNA was extracted and genotyped on an Illumina GoldenGate
platform as previously described (Hodgkinson et al., 2008). The HTR2C
single nucleotide polymorphism Cys23Ser (rs6318) was selected because
this variant substitutes a serine for a cysteine in the putative extracellular
N terminus of the receptor, increasing the likelihood of functional effects
(Lappalainen et al., 1995). Because HTR2C is on the X chromosome,
males are hemizygous (Cys or Ser), and females may be homozygous or
heterozygous (Cys/Cys, Cys/Ser, or Ser/Ser). The HTR2C gene is subject
to X inactivation in females. Genotype frequencies were in Hardy-
Weinberg equilibrium.

For hypothesis testing, participants were classified as Ser23 carriers
and non-carriers (Ser23-dominant model, Table 1) in accord with a
previous association study (Lerer et al., 2001). Other classifications were
explored post hoc. Gene effects were examined in females and males
separately, excluding the single Ser/Ser participant. Because male hem-

Figure 1. Effects of pain-stress on striatal dopamine release as a function of HTR2C genotype. A, Stress-induced dopamine
release, expressed as percentage change in D2/D3 binding potential (BPND) relative to baseline, in three striatal regions of interest.
Positive change represents pain-induced decrease in BPND, which reflects dopamine release. Error bars indicate SEM. B, Nucleus
accumbens, caudate nucleus, and putamen regions of interest are shown over a coronal MRI section in standardized space ( y �
10). C, Stress-induced dopamine release versus HTR2C genotype for the 3-group classification.

Mickey et al. • Dopamine Release and the Serotonin 2C Gene J. Neurosci., July 4, 2012 • 32(27):9344 –9350 • 9345



izygotes are in theory functionally equivalent to female homozygotes, we
also explored a 3-group classification: Cys/Cys or Cys versus Cys/Ser
versus Ser/Ser or Ser.

To control for population stratification, samples were genotyped for
186 ancestry informative markers (AIMs) using an Illumina GoldenGate
assay as described previously (Hodgkinson et al., 2008). Factor analysis
resulted in a seven-factor solution which yielded ethnic factor scores for
each individual. In our sample, the mean (median) ancestry factor scores
were as follows: Europe, 0.67 (0.94); Africa, 0.14 (0.001); Asia, 0.10
(0.02); Middle East, 0.06 (0.02); East Asia, 0.02 (0.003); America, 0.008
(0.003); Oceania, 0.004 (0.002). Because factor scores were correlated
and the sample was predominantly Caucasian, the Europe factor score
was included as a covariate in all analyses to account for ancestral vari-
ability in allele frequency.

Statistical analysis. Initial power analysis indicated that, with group
sizes of 11 and 43, we would have �80% power to detect a standardized
effect size of �1.0 with a 5% type I error rate (Kraemer and Thiemann,
1987). To test our primary hypothesis that Cys23Ser would be associated
with dopaminergic neurotransmission, we used a multivariate repeated-
measures general linear model (PASW Statistics 18.0, Chicago, IL). The
dependent variables were BPND in each of the three regions of interest
(nucleus accumbens, caudate nucleus, and putamen) before and after
pain. Left and right were averaged because pain activates the striatum
bilaterally (Scott et al., 2006), and we had no basis for hypothesizing
lateralized gene effects. The Hotelling multivariate test accounted for
testing of three brain regions. Pain condition was the within-subject
factor. Ser23 carrier classification (Table 1) was the between-subjects
factor. Sex, age, and AIMs Europe factor score were included as covari-
ates in all statistical models because Cys23Ser distribution varies with
ancestry (Lerer et al., 2001; Drago and Serretti, 2009), because HTR2C is
X-linked, and because of previous reports that D2/D3 receptor availabil-
ity and dopamine release vary with sex and age (Pohjalainen et al., 1998;
Munro et al., 2006). Furthermore, our own data showed that age and sex
were associated with BPND (see Results). Where statistically significant
effects were found with the general linear model, to aid interpreta-
tion, we computed the percentage change in BPND as an index of
dopamine release.

Psychophysical measures of pain and emotion were also analyzed with
a general linear model. As for the PET analysis, Ser23 carrier classification
was the between-subjects factor, and sex, age, and AIMs Europe factor
score were included as covariates. Highly skewed measures (pain sensi-
tivity, MPQ Affect subscale, PANAS Negative subscale) were trans-
formed to normal scores before analysis (Blom proportion estimation,
PASW Statistics 18.0).

Results
Fifty-four individuals completed PET and the pain-stress chal-
lenge. Participants were classified as carriers or non-carriers of
the HTR2C Ser23 allele (Table 1). Pain intensity ratings during
the challenge were not associated with Ser23 carrier status (Table
2), demonstrating that the challenge paradigm resulted in com-
parable levels of subjective pain for the two groups. A trend to-
ward greater pain sensitivity (ratio of pain intensity rating to
volume of saline administered) was found among Ser23 carriers
(Table 2). Cys23Ser genotype was not associated with emotion

ratings on the Positive and Negative Affect Schedule prechallenge
or postchallenge (Table 2). Scores on the McGill Pain Question-
naire, which reflected an individual’s overall qualitative experi-
ence of pain immediately after the challenge, were greater among
Ser23 carriers (Table 2).

Striatal D2/D3 receptor BPND was quantified before and after
pain, and genetic association with BPND was tested using a
repeated-measures general linear model. Sex, age, and ancestry
were included as covariates for the following reasons. In agree-
ment with previous reports (Pohjalainen et al., 1998; Munro et
al., 2006), we found that BPND was associated with sex (main
effect, p � 0.009, F(3,50) � 4.35; sex-by-pain interaction, p �
0.013, F(3,50) � 3.96; multivariate test) and age (main effect,
p � 0.005, F(3,50) � 4.78; age-by-pain interaction, p � 0.58,
F(3,50) � 0.66; multivariate test). Furthermore, previous work
showed that HTR2C allelic distribution varies with ancestry (Le-
rer et al., 2001; Drago and Serretti, 2009). The repeated-measures
general linear model demonstrated a significant interaction
between Ser23 carrier status and pain condition, and no main
effect of Ser23 (Table 3).

To interpret these findings, we calculated the fractional
change in BPND as an index of pain-induced dopamine release,
and found that release was greater among Ser23 carriers for all
three striatal regions of interest (Fig. 1A,B). Genotype accounted
for 12%, 5%, and 7% of the variance in dopamine release in the
nucleus accumbens, caudate, and putamen, respectively (stan-
dardized effect size, 0.7–1.0). Dopamine release in the nucleus
accumbens actually decreased post-pain in the Cys23 group, on
average (Fig. 1A), indicating greater synaptic dopamine release
during anticipation of pain than during the subsequent experi-
ence of pain. Ser23 was not associated with baseline BPND (p �
0.30, multivariate general linear model, controlling for sex, age,
and ancestry).

To explore whether the association of Cys23Ser with dopa-
mine release could be accounted for by differences in sensitivity
to sustained pain or overall pain experience, we added pain sen-
sitivity and total McGill pain score as covariates in the repeated-
measures model. Including these covariates weakened the Pain �
Ser23 interaction in caudate and putamen, but the effect in the
nucleus accumbens persisted (Table 3). We also explored an al-

Table 1. HTR2C Cys23Ser genotypes of the study sample

Genotype group N

All 54
Cys/Cys female 24
Cys/Ser female 6
Ser/Ser female 1
Cys male 19
Ser male 4
Cys/Cys and Cys 43
Ser carrier 11

Table 2. HTR2C Ser23 carrier status and psychophysical measures during the pain-
stress challenge

Mean (SD)

pa F(1,49)

Cys23 only
n � 43

Ser23 carrier
n � 11

Pain intensity (visual analog scale) 32 (12) 39 (11) 0.12 2.49
Saline infusion volume (ml) 2.9 (1.2) 2.2 (1.3) 0.12 2.57
Pain sensitivity (intensity / saline volume) 1.6 (1.5) 3.1 (3.3) 0.07 3.52
PANAS Positive subscale, before pain 14.5 (6.9) 16.5 (7.2) 0.41b 0.69b

PANAS Positive subscale, after pain 9.9 (7.0) 11.0 (7.0) 0.64c 0.22c

PANAS Negative subscale, before pain 3.2 (3.6) 8.1 (12.5) 0.22b 1.53b

PANAS Negative subscale, after pain 3.3 (5.4) 5.8 (5.9) 0.72c 0.13c

MPQ Total 23.1 (9.4) 31.9 (14.3) 0.023 5.48
Sensory subscale 15.1 (6.2) 20.1 (8.5) 0.040 4.45
Affect subscale 1.6 (2.5) 2.6 (3.1) 0.21 1.61
Evaluative subscale 1.8 (1.3) 2.6 (1.3) 0.09 2.97
Miscellaneous subscale 4.7 (2.2) 6.6 (3.6) 0.039 4.51

MPQ Present Pain Intensity subscale 2.3 (0.7) 2.6 (0.7) 0.40 0.71

PANAS, Positive and Negative Affect Schedule; MPQ, McGill Pain Questionnaire. Bold indicates p � 0.05.
ap values represent the effect of Ser23 carrier status on each psychophysical variable, separately evaluated using a
general linear model, adjusted for sex, age, and European ancestry factor score.
bSer23 main effect, repeated-measures model.
cPain � Ser23 interaction, repeated-measures model.
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ternative 3-group genotype classification scheme, and examined
gene effects in females and males separately. Similar effects of the
Ser23 allele were observed in those analyses, especially in the
nucleus accumbens (Table 3, Fig. 1C).

Discussion
Based on the pivotal role of 5-HT2C receptors in the regulation of
mesoaccumbal dopamine in experimental animals, we hypothe-
sized that a putatively functional variant of the HTR2C gene
would be associated with dopaminergic function in humans ex-
posed to a salient, stressful stimulus—a standardized pain chal-
lenge. We found that carriers of the HTR2C Ser23 allele had
greater release of dopamine in all striatal regions, but especially in
the nucleus accumbens, where genotype accounted for 12% of
the variance in dopamine release. To our knowledge, this is the
first evidence for an effect of the Cys23Ser polymorphism on
dopaminergic responses in humans.

We observed the association of Ser23 with dopamine release
while controlling for sex, age, and ancestry. Adjusting for these
variables is important for several reasons. First, genetic associa-
tions are vulnerable to the confounding effects of population
stratification, and variation in Cys23Ser allele frequencies across
ethnicities has been described (Lerer et al., 2001; Drago and Ser-
retti, 2009). Second, HTR2C is on the X chromosome, so sex
differences are possible in principle. Third, sex and age effects on
D2/D3 receptor availability and dopamine release have been re-
ported (Pohjalainen et al., 1998; Munro et al., 2006). For those
reasons, we characterized each subject’s genetic background by
genotyping ancestry informative markers, and ancestry, sex, and
age were included in all statistical models. We also detected the
genetic association in males and females separately. That a ge-
netic effect was observed regardless of sex, age, and ancestry

strongly suggests that the association between Cys23Ser and do-
pamine release is not simply an artifact of population stratifica-
tion or demographic factors. We cannot rule out the possibility
that a genetic locus in strong linkage disequilibrium with
Cys23Ser may be the actual causal factor, but there is currently no
better candidate than Cys23Ser itself.

How the Cys23Ser polymorphism impacts 5-HT2C receptor
function is not altogether clear. The Ser23 variant lacks a cysteine
residue in the putative extracellular N terminus of the receptor,
which potentially eliminates a disulfide bond. In vitro functional
studies have been discrepant, but the discrepancies might be ac-
counted for by differences in assay systems. The Ser23 variant had
lower high-affinity binding (but not low-affinity binding) and a
steeper intracellular calcium response curve in COS-7 cells
(Okada et al., 2004), greater constitutive activity in an Sf9 cell
G-protein reconstitution system (Okada et al., 2004), and greater
cell surface expression and faster resensitization following inverse
agonist treatment in HEK293 cells (Walstab et al., 2011). On the
other hand, in HEK293 and NIH-3T3 cells, no differences
between Ser23 and Cys23 variants were found in cellular lo-
calization, high-affinity binding, phosphoinositide signaling,
constitutive activity, or homodimerization (Fentress et al., 2005)
and no differences were seen in frog oocytes under baseline condi-
tions (Lappalainen et al., 1995). In addition to the usual difficulties in
extrapolating in vitro findings to the intact nervous system, 5-HT2C

receptors are subject to an extraordinary degree of region-specific
RNA editing (Niswender et al., 2001; Gurevich et al., 2002; Berg et al.,
2008; Drago and Serretti, 2009; Iwamoto et al., 2009), so additional
in vivo studies of Ser23 variant function are needed.

5-HT2C receptors are thought to mediate the inhibitory effects
of serotonin on mesoaccumbal function (Eberle-Wang et al.,

Table 3. HTR2C genotype and D2 /D3 binding potential during the pain-stress challenge

Accumbens Caudate Putamen Multivariate

Primary analysis: Ser23 dominant model (Ser23
carrier versus non-carrier)a

Main effect of Ser23 0.31 (1.06, 0.021) 0.61 (0.27, 0.005) 0.22 (1.57, 0.031) 0.62 (0.60, 0.037)
Pain � Ser23 0.003 (10.05, 0.170) 0.037 (4.62, 0.086) 0.034 (4.76, 0.089) 0.028 (3.30, 0.174)
df 1, 49 1, 49 1, 49 3, 47

Exploratory analyses
Ser23 dominant model with pain covariatesb

Main effect of Ser23 0.33 (0.98, 0.020) 0.85 (0.04, 0.001) 0.52 (0.43, 0.009) 0.81 (0.33, 0.021)
Pain � Ser23 0.007 (8.07, 0.147) 0.12 (2.51, 0.051) 0.12 (2.47, 0.050) 0.040 (3.00, 0.167)
df 1, 47 1, 47 1, 47 3, 45

Three-group modelc

Main effect of group 0.46 (0.79, 0.032) 0.21 (1.64, 0.064) 0.14 (2.09, 0.080) 0.56 (0.82, 0.052)
Pain � group 0.005 (5.86, 0.196) 0.08 (2.67, 0.100) 0.06 (2.99, 0.111) 0.09 (1.89, 0.112)
df 2, 48 2, 48 2, 48 6, 90

Females onlyd

Main effect of group 0.15 (2.19, 0.078) 0.14 (2.31, 0.082) 0.033 (5.08, 0.163) 0.20 (1.69, 0.174)
Pain � group 0.025 (5.69, 0.180) 0.12 (2.54, 0.089) 0.09 (3.14, 0.108) 0.18 (1.76, 0.180)
df 1, 26 1, 26 1, 26 3, 24

Males onlye

Main effect of group 0.65 (0.22, 0.011) 0.31 (1.08, 0.054) 0.20 (1.79, 0.086) 0.61 (0.63, 0.100)
Pain � group 0.022 (6.18, 0.245) 0.16 (2.15, 0.102) 0.17 (2.05, 0.097) 0.16 (1.94, 0.255)
df 1, 19 1, 19 1, 19 3, 17

p values are shown for the repeated-measures multivariate general linear model. In parentheses are the F statistic and partial �2 (a measure of effect size). p values for individual regions are uncorrected. The Hotelling
multivariate test (right-hand column) accounts for multiple comparisons across the three regions. Dependent variables are binding potential in three regions of interest before and after the pain challenge. df, Degrees of
freedom. Bold indicates p � 0.05.
aPrimary model: between-subjects factor is Ser23 carrier status; covariates are sex, age, and European ancestry score.
bBetween-subjects factor is Ser23 carrier status; covariates are sex, age, European ancestry factor score, pain sensitivity, and McGill Pain Questionnaire total score.
cBetween-subjects factor is genotype group (Cys/Cys or Cys; Cys/Ser; Ser/Ser or Ser); covariates are sex, age, and European ancestry score.
dBetween-subjects factor is genotype group (Cys/Cys versus Cys/Ser); covariates are age and European ancestry score; Ser/Ser participant was excluded.
eBetween-subjects factor is genotype group (Cys versus Ser); covariates are age and European ancestry score.
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1997; Di Giovanni et al., 2001; Berg et al., 2008; Di Matteo et al.,
2008; Egerton et al., 2008), so our finding of greater stress-
induced dopamine release among Ser23 carriers would be con-
sistent with weaker serotonergic modulation of mesoaccumbal
projections in those individuals. There are several plausible
mechanisms that might contribute. Release of serotonin in the
ventral tegmental area (VTA) normally activates inhibitory in-
terneurons via 5-HT2C receptors, increasing local inhibition of
VTA dopamine neurons, and reducing dopamine release in the
striatum. This mechanism would be less efficient among Ser23
carriers if this receptor variant had lower affinity for endogenous
serotonin (Okada et al., 2004), or if this variant had a smaller
dynamic response to endogenous serotonin as a result of greater
constitutive activity (Okada et al., 2004). 5-HT2C receptors are
also expressed by VTA dopamine neurons (Berg et al., 2008;
Bubar et al., 2011), so a more direct influence of HTR2C poly-
morphism on dopamine release is also possible. Mechanisms
outside the VTA could also be at play. For example, 5-HT2C re-
ceptors likely mediate negative feedback in the raphe nuclei by
activating interneurons which inhibit serotonin release (Di Mat-
teo et al., 2008) so it is conceivable that the Ser23 variant alters
negative feedback locally in the raphe, decreasing serotonin re-
lease in the VTA and elsewhere.

We are aware of one other neuroimaging study that investi-
gated the Cys23Ser polymorphism (Kühn et al., 2004). Regional
cerebral blood flow was quantified with and without a serotoner-
gic challenge as a function of Cys23Ser genotype, and complex
changes were described. As the authors point out, the pharmaco-
logic challenge did not produce the expected changes in blood
flow (Kühn et al., 2004) so the results are not easily interpreted.
Furthermore, it is likely that the HTR2C gene effects reported
would not survive correction for multiple comparisons. In our
K1 images—which reflect baseline cerebral blood flow and tracer
extraction—we found a whole-brain-corrected gene effect in
only one small cluster in left occipital cortex (unpublished re-
sults) suggesting minimal effects of the Cys23Ser polymorphism
on baseline blood flow.

If independently confirmed, our finding of greater stress-
induced dopamine release among Ser23 carriers may have impli-
cations for neuropsychiatric disease. Although initial genetic
studies found no association with mood disorders (Gutiérrez et
al., 1996; Frisch et al., 1999), a larger subsequent study (total n 	
2000) found a higher prevalence of Ser23 carriers among individ-
uals with recurrent major depressive disorder or bipolar disorder,
even after controlling for population stratification (Lerer et al.,
2001). Ser23 has also been associated with lower reward depen-
dence and persistence traits (Ebstein et al., 1997). In the context
of convergent evidence that alterations in dopaminergic circuitry
underlie depression and depressive behaviors (Nestler and Car-
lezon, 2006) our findings raise the possibility that excess risk of
mood disorders among Ser23 carriers is mediated in part by
greater mesoaccumbal reactivity to stress. Furthermore, the
5-HT2C receptor has been suggested as a target for antidepressant
drugs (Millan et al., 2005; Strong et al., 2009; Dekeyne et al.,
2012). Our findings suggest that HTR2C genotype might be a
useful predictor for an individual’s clinical response to such
antidepressants.

Our results also inform future studies of HTR2C. Most genetic
association studies of Cys23Ser and other neuropsychiatric con-
ditions (alcohol abuse, schizophrenia, eating disorders, suicide,
medication effects) have been negative (recently reviewed by
Drago and Serretti, 2009), but that may be due to small sample
sizes and a focus on psychiatric diagnosis as the phenotype.

Future human studies might usefully focus on dopamine-
related cellular, circuit-level, and behavioral phenotypes (i.e.,
intermediate phenotypes) that transcend diagnostic catego-
ries. Given the close mechanistic links between 5-HT2C recep-
tors and the dopamine system, and potential interactions
between HTR2C and dopaminergic gene variants (Ebstein et
al., 1997), future studies with sufficiently large samples should
also examine the effects of such gene interactions on interme-
diate phenotypes.

In conclusion, we found that a common, putatively functional
variant of a key serotonergic gene was associated with greater
stress-induced mesoaccumbal dopamine release—a plausible in-
termediate phenotype for mood disorders, addictions, and other
stress-related illnesses. Future studies should explore other
genetic and environmental factors that might contribute to
stress responsiveness of mesoaccumbal dopaminergic cir-
cuitry in humans.
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