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Neural Representation of Natural Images in Visual Area V2
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Area V2 is a major visual processing stage in mammalian visual cortex, but little is currently known about how V2 encodes information
during natural vision. To determine how V2 represents natural images, we used a novel nonlinear system identification approach to
obtain quantitative estimates of spatial tuning across a large sample of V2 neurons. We compared these tuning estimates with those
obtained in area V1, in which the neural code is relatively well understood. We find two subpopulations of neurons in V2. Approximately
one-half of the V2 neurons have tuning that is similar to V1. The other half of the V2 neurons are selective for complex features such as
those that occur in natural scenes. These neurons are distinguished from V1 neurons mainly by the presence of stronger suppressive
tuning. Selectivity in these neurons therefore reflects a balance between excitatory and suppressive tuning for specific features. These
results provide a new perspective on how complex shape selectivity arises, emphasizing the role of suppressive tuning in determining
stimulus selectivity in higher visual cortex.

Introduction
The mammalian visual system consists of a hierarchy of sub-
cortical and cortical regions that represent increasingly com-
plex properties of the retinal image. To understand how this
system mediates our perception of the natural world we need
to know what specific image properties are encoded by the
neurons in each region, and how representations in higher
cortical areas are constructed by nonlinear combination of the
output of earlier areas. Existing models describe how neu-
rons in primary visual cortex (V1) respond to simple stimuli
(Movshon et al., 1978; Daugman, 1980; Carandini et al., 1997)
and natural images (David et al., 2004). In primates, the pri-
mary output of V1 projects to area V2. However, no current
models can explain how V2 encodes the structure of natural
images.

Even the most basic principles of image representation in V2
are unclear. Studies using sinusoidal gratings have suggested that
representation in V2 is similar to V1 (Levitt et al., 1994), which
implies that V2 represents the sparse components of natural im-
ages (i.e., Gabor wavelets) (Olshausen and Field, 1996; Bell and
Sejnowski, 1997). In contrast, studies using richer synthetic stim-
uli have shown that V2 neurons are sensitive to higher-order
stimulus properties such as illusory and texture-defined contours
(von der Heydt et al., 1984; von der Heydt and Peterhans, 1989),
border ownership (Zhou et al., 2000), and complex image fea-
tures (Hegdé and Van Essen, 2000; Ito and Komatsu, 2004; Anzai
et al., 2007). As a result, it is unclear whether V2 is merely a relay

station that contains neurons qualitatively similar to those in V1,
or whether V2 genuinely represents more complex aspects of
visual scenes.

We sought to resolve this debate by using a rich neurophysi-
ological data set to construct quantitative models that describe
how V2 neurons encode the complex structure of natural images.
We recorded extracellular activity from neurons in areas V1 and
V2 while stimulating the visual system with a large ensemble of
natural images. This unbiased stimulus set allowed us to probe
each neuron in detail without making any previous assumptions
about which specific features might be represented in V2. We
used the neuronal responses to estimate a nonlinear spatiotem-
poral receptive field (STRF) for each neuron. Each STRF is an
objective, quantitative model that describes how a single V1 or V2
neuron encodes the structure of natural images. These models
enable us to compare directly the principles of natural image
representation in areas V1 and V2.

Materials and Methods
Data collection
Extracellular recordings were made from well isolated neurons in parafo-
veal areas V1 (46 neurons) and V2 (96 neurons) of three awake, behaving
male rhesus macaques (Macaca mulatta). All procedures were performed
under a protocol approved by the Animal Care and Use Committee at the
University of California and met or exceeded National Institutes of
Health and U.S. Department of Agriculture standards. Surgical proce-
dures were conducted under appropriate anesthesia using standard ster-
ile techniques (Vinje and Gallant, 2002). Areas V1 and V2 were located by
exterior cranial landmarks and/or direct visualization of the lunate sul-
cus, and location was confirmed by comparing receptive field properties
and response latencies to those reported previously (Gattass et al., 1981;
Schmolesky et al., 1998).

During recording, the animals performed a fixation task for a liquid
reward. Eye position was monitored with an infrared eye tracker (500 Hz;
Eyelink II; SR Research) and trials during which eye position deviated
�0.5° from the fixation spot were excluded from our analysis. The SD of
the fixational eye movements was typically 0.1°. Activity was recorded
using tungsten electrodes (FHC), and amplified and neural signals were
isolated using a spike sorter (Plexon).
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Experiments were controlled and stimuli generated using custom be-
havioral/stimulus display software (PyPE) running on a Linux-based PC.
Stimuli were displayed on a 21 inch Trinitron monitor (Sony) capable of
displaying luminances up to 500 Cd/m 2. The luminance nonlinearity
(gamma) of the monitor was calibrated and corrected in software to
provide a linear luminance response.

After isolating each neuron, the boundaries of the classical recep-
tive field (CRF) were estimated using bars and gratings. The CRF was
localized precisely by reverse correlation of responses to a dynamic
sparse noise stimulus: black and white squares or bars positioned
randomly on a gray background and randomly repositioned at 5–10
Hz (Jones and Palmer, 1987a; DeAngelis et al., 1993; Vinje and Gal-
lant, 2002). The bars were scaled so that six to eight squares spanned
the manually estimated receptive field (0.1–1.5°/square). The CRF
was defined as the circle around the region where sparse noise stimula-
tion elicited spiking responses. Our manual and automatic estimation pro-
cedures were generally in good agreement. CRF diameters ranged from
0.5 to 10.4° (median, 2.2°), and eccentricities ranged from 0.1 to 49°
(median, 3.1°).

In the main experiment, each neuron was probed with a rapidly
changing sequence of natural images. The images were circular

patches of grayscale digital photographs from a
commercial digital library (Corel). Patches
were chosen by an automated algorithm that
selected them at random but favored patches
with high contrast [to reduce the frequency of
blank stimuli (e.g., patches of sky)]. All patches
were adjusted with a gamma nonlinearity of
2.2, to give an appropriate luminance profile
on our linearized display. The outer edges of
the patches (10% of the radius) were blended
smoothly into the neutral gray background,
whose luminance was chosen to match the
mean luminance of the image sequence.

Random images were then concatenated
into long sequences so that each 16.7 ms frame
contained a random image patch from the li-
brary. All images were centered on the CRF and
patch size was adjusted to be two to four times
the CRF diameter. The entire sequence was
broken into 3–5 s segments, and one segment
was presented on each fixation trial. To avoid
transient trial onset effects, the first 196 ms of
data acquired on each trial were discarded be-
fore analysis.

STRF estimation
Rate-coding sensory neurons have often
been modeled in terms of a linear STRF (De-
Boer and Kuyper, 1968; Marmarelis and Mar-
marelis, 1978; Theunissen et al., 2001; Wu et al.,
2006). Most cortical neurons have nonlinear re-
sponses, and nonlinear extensions of the STRF
concept have been developed to describe such
responses (Aertsen and Johannesma, 1981;
David et al., 2004). Here, STRFs were esti-
mated using a nonlinear wavelet decomposi-
tion of the stimuli. The wavelet pyramid
[Berkeley wavelet transform (BWT)] is de-
scribed in Results and shown in Figure 1.
Having decomposed each input image using
this transform, the 729 wavelet responses
were half-wave rectified, taking the positive
and negative responses separately. This pro-
duced a spatially and spectrally localized rep-
resentation of the images that is qualitatively
similar to the responses of a population of V1
simple cells. The means and SDs of these re-
sponses were standardized, producing a li-
brary of 1458 time-varying rectified BWT

responses at four separate phases.
To completely describe the responses of a neuron, more than one

rectified wavelet is required. For example, a classical energy model com-
plex cell would be modeled using four half-wave rectified wavelets. A
complete description of each neuron was therefore estimated as an opti-
mal weighted linear sum of the rectified BWT responses. The resulting
weighted sum is a nonlinear analog of the classical linear STRF. The
complete neural model is shown in Figure 2. Each STRF was estimated at
10 time lags, i.e., at 0, 16.7, . . . 167.8 ms.

Boosting
The L2Boost algorithm (Friedman, 2001) (“boosting”) was used to esti-
mate the STRF of each neuron. Boosting is a coordinate descent algo-
rithm that provides an efficient way to estimate a complex model, even
when data are limited. In effect, boosting performs regularization with a
sparse prior. Here, boosting was used to estimate each STRF in terms of
a linear sum of rectified BWT wavelet responses. If the rectified BWT
wavelets are represented as a matrix S, the time-varying neuronal re-
sponse, r, can be modeled as a linear transform, h (the STRF), of the
transformed stimulus matrix as follows:

Figure 1. Wavelet decomposition of stimuli. a, Random sequences of natural scenes were presented, centered on the CRF of
each neuron and covering approximately three times the CRF diameter, r. b, Each stimulus frame was decomposed using a wavelet
pyramid (the BWT), containing odd- and even-symmetric wavelets, over a region covering 3r � 3r. To demonstrate the range of
spatial scales of the BWT analysis, this panel presents examples of these wavelets at three spatial scales ( f, 3f, 9f ). c, Two complete
scales of the wavelet pyramid. The wavelets cover four orientations (0, 90, 180, 270°) at three scales ( f, 3f, 9f; although only the
lower two scales are shown here) and tile the x–y plane.
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r̂ � Sh.

Fitting consists of minimizing a loss function,
L, which is equal to the mean-square error be-
tween the model response, r̂, and the actual
neuronal response as follows:

L � (r̂ � r)2.

Initially, the STRF, h 0, is equal to the zero vec-
tor. A small increment, �, is calculated to be
equal to 1% of the SD of the neuronal PSTH, r.
On each iteration, n, the gradient, �L/�hn, of
the loss function with respect to the STRF is
calculated. The index, j, that maximizes the
gradient is as follows:

j � argmax
j

� �L

�hj
n�.

The jth element of the STRF is then updated by
increasing its magnitude by � as follows:

hfwd � hn � �sign� �L

�hj
n�j.

This algorithm iteratively constructs a STRF
for each neuron, in which each coefficient is
a weighting function that indicates the im-
portance of each BWT wavelet in describing
that neuron. Positive coefficients indicate structure that is positively
correlated with neuronal firing. Negative coefficients indicate
structure that is anticorrelated with firing. Positive and negative co-
efficients correspond to excitatory and suppressive structure,
respectively.

The L2Boost algorithm shows considerable resistance to overfitting,
but it will overfit if run to completion. Here, overfitting was minimized
by early stopping. For each neuron, two small subsets (10% each) of the
data were reserved, and not used to fit the STRFs. Predictions of re-
sponses to the first reserved set were monitored during fitting, and fitting
was terminated when predictions started to decrease, indicating that
overfitting was beginning to occur. In combination with boosting, early
stopping tends to produce sparse models (i.e., models that contain the
minimal number of significant coefficients required to achieve good pre-
dictions). Finally, predictions on the second reserved data set were mea-
sured, to provide an unbiased estimate of how well each STRF described
the responses of each neuron.

One common concern when performing STRF estimation with non-
white stimuli is that the biased stimulus statistics might bias the estimated
STRFs. Several methods have been proposed for correcting such bias
(Theunissen et al., 2001; Willmore and Smyth, 2003; Wu et al., 2006).
Boosting solves this problem directly: it converges on the optimal unbiased
solution in the case of infinite noiseless data (Friedman, 2001), and we
find that it degrades gracefully under realistic conditions.

To ensure that the L2Boost algorithm gave consistent STRFs for each
neuron, STRF estimation was repeated for 10 jackknives of the training
stimulus set. The excitation index, E, was calculated for each jackknife.
For V1, the jackknife estimates of the mean and SEM of E were 0.71 and
0.073, respectively. For V2, the jackknife estimates of the mean and SEM
of E were 0.25 and 0.064.

Cross-validation of STRFs
To determine how well the STRFs described the responses of each
neuron, a cross-validation procedure was used. In addition to the
main training set of 8000 – 80,000 images, neural responses were re-
corded to a separate cross-validation set of 600 natural images. None
of the cross-validation images was present in the training set. The
cross-validation images were presented at least 10 times to each neu-
ron. The explainable variance of responses to the cross-validation
images was calculated by measuring the mutual correlation between
responses to the repeated presentations (David and Gallant, 2005),

and response predictions are quoted as a fraction of explainable
variance.

Cluster analysis
The distribution of STRF profiles across the V1–V2 samples was assessed
by cluster analysis. First, the peak response latency, t�, of each neuron was
estimated based on the SD of the STRF. All STRF latencies from 0 to t� �
16.7 ms were considered transient; those from t� � 33.3 ms onward were
considered sustained. Each STRF was then normalized to the primary
orientation tuning of the strongest BWT coefficient in the STRF. The
remaining STRF coefficients were then classified along the following
dimensions: sign (positive/excitatory or negative/suppressive), orienta-
tion relative to the primary (on, off/45°, cross/90°), location (within or
outside the CRF), and whether they were transient or sustained (Fig. 3).
Finally, the on-orientation within-CRF wavelets were divided into two
categories: one for the primary wavelet and one for all others. This
procedure gave a total of 25 categories that were independent of the
primary orientation and spatial frequency tuning of each neuron.
Since the animals made microsaccades during fixation, the phase of
each wavelet is subject to some uncertainty. No attempt was therefore
made to classify the neurons as simple or complex. The kernel coef-
ficients in each category were summed separately for each STRF,
reducing the original 14,580-dimensional STRF to a much more com-
pact 25-dimensional vector. To assess the similarities between these
vectors, each vector was standardized to length 1, and the Euclidean
distance between each pair of vectors was calculated. Finally, hierar-
chical clustering using Ward linkage was performed on the distance
matrix.

Permutation was used to assess the statistical significance of each
cluster. For the largest bifurcation (see Fig. 4, clusters A and B), the set
of vectors representing the complete V1–V2 sample were randomly
reshuffled 1000 times. After each random reshuffle, the cluster anal-
ysis described above was performed and the maximum cluster sepa-
ration was calculated. Statistical significance was assessed by
comparing the observed cluster separation to the distribution of shuf-
fled cluster distances. The same procedure was used to calculate sta-
tistical significance of the various subclusters.

Alternative STRF models
All neurons in this study were modeled in terms of the rectified BWT.
This model is well motivated because it contains rectified wavelet filters

Figure 2. The BWT STRF model used to describe each neuron and the procedure used to fit the model. The BWT models a neuron
as a sum of half-wave rectified Gabor-like wavelet channels. For each neuron, the BWT of each image in the stimulus set was first
calculated, and each wavelet channel was half-wave rectified. Boosting was then used to calculate a weighting function, h, that
quantifies the importance of each wavelet in describing the responses of the neuron. The STRF of each neuron is represented as a
weighted, rectified BWT pyramid. When each estimated STRF is used to filter an image, it provides a prediction of the response of
the corresponding neuron to that image. PSTH, Peristimulus time histogram.
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whose responses are qualitatively similar to those of V1 neurons, and it
provides good predictions of the responses of V2 neurons. However, the
model is novel, and it is therefore conceivable that the use of this model
has introduced artifacts into the results. To ensure that this is not the
case, a number of control analyses were performed.

The most important features of the rectified BWT model are the
spatial structure of the BWT itself, and the nonlinear rectification step
(for more detail, see Results and Figs. 1, 2). The spatial structure of the
BWT reflects a compromise. Although the BWT filters are qualita-
tively similar to V1 neurons (localized in space, spatial frequency, and
orientation), Gabor filters provide a better model of individual V1
simple cells. Yet the BWT filters form a complete, orthogonal set that
minimizes the number of filters required to represent an image. This
makes the BWT more computationally efficient than a Gabor filter
bank and makes it possible to build more predictive models using a
limited amount of neurophysiological data. However, it is possible
that the pixelated structure of the BWT has introduced artifacts into
our data. To exclude this possibility, our data were refit using several
models with different spatial structure from the BWT— center-
surround receptive fields and single pixels.

The nonlinear rectification step is crucial to ensure that the recti-
fied BWT model can accurately describe cortical responses. Without
this step, the rectified BWT model would merely be a linear model. As
such, it would not be capable of describing nonlinear behavior such as
the phase-invariant nonlinear responses of cortical complex cells.
Here, rectification was introduced by taking separately the positive
and negative parts of the responses, w, of each wavelet, giving two
half-wave rectified signals, �w� � and ��w� �. It is possible that this
simple rectification step might be inappropriate for V1 or V2 neu-
rons, or might have introduced artifacts, and so our data were refit
using different nonlinear (and linear) models.

The set of alternative models used was as follows.

BWT plus center-surround. This model con-
sisted of a complete set of BWT filters, plus an
additional set of 729 center-surround filters at
three spatial scales. The outputs of these filters
were rectified by the same method used for the
rectified BWT model.

Linear. This model consisted of a complete
set of BWT filters, but the responses of the fil-
ters were not rectified. Therefore, this was a
simple linear model.

Rectified with positive threshold. This model
consisted of a complete set of rectified BWT
filters. The rectified responses of the filters
were then thresholded, with a threshold level
that was set equal to the mean response of the
filter to the entire image set.

Half-squaring. This model consisted of a
complete set of BWT filters. The responses of
the filters were then passed through a half-
squaring output nonlinearity.

Contrast normalized. This model was similar
to the rectified BWT model, but the BWT filter
bank was supplemented with one extra con-
trast filter with no output nonlinearity. The re-
sponse of the contrast filter was equal to the SD
of the pixel values of each image. This is a linear
model of contrast gain control.

Contrast filter. This model was similar to the
rectified BWT model, but each image was
contrast-normalized before being passed to the
BWT filter bank. This is a divisive model of
contrast gain control.

Logistic. This model was similar to the rectified
BWT model, but it was fit by means of logistic (in-
stead of linear) regression. Since the logistic func-
tion is a sigmoid, whose parameters are allowed
to vary, this introduces a variable soft threshold to
the output of the entire STRF model.

Rectified difference-of-Gaussians. This model was similar to the recti-
fied BWT model but replaced the BWT filter bank with a set of 729
difference-of-Gaussians filters. Each filter had a two pixel excitatory cen-
ter, and eight pixel inhibitory surround, balanced to give a zero-DC filter.
The responses of the filters were half-wave rectified, as for the rectified
BWT.

Rectified pixels. This model was similar to the rectified BWT model but
replaced the BWT filter bank with a set of 729 single pixels. Each filter was
normalized to have zero DC. The responses of the filters were half-wave
rectified, as for the rectified BWT.

Results
We made extracellular recordings from 96 neurons in area V2
and 46 neurons in area V1 during presentation of a large set of
natural images. Each image set consisted of 8000 – 80,000 photo-
graphs of landscapes, animals, humans, and man-made objects.
The classical receptive field of each neuron was identified using a
sparse noise stimulus (see Materials and Methods), and the nat-
ural images were scaled to cover two to four times the classical
receptive field of each neuron.

Wavelet STRFs predict V2 responses to complex stimuli
The rectified wavelet transform provides a simple, abstract model
of the responses of a population of V1 simple cells to complex
stimuli. Each of the 1458 rectified wavelets is tuned for spatial
position, spatial frequency, orientation, and spatial phase, and so
its tuning resembles the tuning of a V1 simple cell. By linear
summation of the responses of four wavelets that differ only in
their phase, one obtains a nonlinear filter that is tuned for

a

b

c

Figure 3. Wavelet classification for cluster analysis. Each STRF was estimated at multiple lags, from 0 to 167 ms, resulting
in a 1458-dimensional time-varying vector. For cluster analysis, dimensionality of the STRF was reduced to a single
length-25 vector. a, First, the peak neural response latency, t�, was found based on the SD of the STRF. All STRF latencies
from 0 to t� � 16.7 ms were considered transient; those from t� � 33.3 ms onward were considered sustained. b, The STRF
weights were used to construct a STRF with separate transient and sustained components. c, Each wavelet in these two
STRFs was classified according to its relationship with the strongest excitatory wavelet in the STRF. This classification
described the wavelets along several dimensions: transient/sustained, excitatory/suppressive, on/off/cross orientation,
and location within the classical receptive field (CRF) or outside (nCRF). Also, the strongest excitatory wavelet was taken
separately, producing a length-25 vector providing an efficient representation of the STRF of each neuron. The use of
relative orientation tuning (on/off/cross) means that the vectors are independent of the orientation preference of each
neuron. Spatial frequency information is collapsed, so that the vectors are also independent of the spatial frequency
preference of each neuron.
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spatial position, spatial frequency, and
orientation, but is not selective for spa-
tial phase. This resembles the tuning of a
V1 complex cell. Thus, the basic tuning
properties of V1 neurons are simply ex-
pressed in terms of the BWT transform.
The BWT is also complete and orthogo-
nal, and so a minimal number of coeffi-
cients are required to completely
represent each stimulus. For all of these
reasons, the BWT provides an efficient
mathematical abstraction of processing
in a population of V1 simple cells.

We used the BWT (Willmore et al.,
2008) (Fig. 1) to estimate the nonlinear
STRF of each recorded neuron (Wu et al.,
2006). The BWT is analogous to the Ga-
bor pyramid commonly used to model
neurons in V1 (Daugman, 1980; Watson,
1987), but it is optimized for neuronal
system identification. The BWT trans-
form represents each STRF in terms of a
complete, orthonormal pyramid of ori-
ented wavelets. Each BWT wavelet is
tuned for a particular position, orienta-
tion, spatial frequency, and phase. Wave-
lets are half-wave rectified so that each
phase (0, 45, 90, 135°) is represented sep-
arately (Fig. 2). The BWT model repre-
sents a V1 simple cell as a single, half-wave
rectified BWT wavelet. By extension, a
single phase-invariant V1 complex cell is
represented as the sum of four BWT
wavelets of different phases (Movshon et
al., 1978; Adelson and Bergen, 1985). For
convenience, in the rest of this paper, we
use the term “wavelet channel” to refer to
a group of one or more rectified BWT
wavelets tuned for a similar orientation,
frequency, and position, but different
phases. When this rectified BWT model is
used to fit a single V2 neuron, the esti-
mated STRF describes tuning in terms of a
combination of V1-like simple and com-
plex wavelet channels.

To estimate the STRF of each neuron,
we first took the half-wave rectified BWT
of each image, and then found the
weighted sum of the BWT wavelets (at 10
time lags: 0, 16.7, . . . 167.8 ms) that opti-
mally predicted the responses of the neuron in a separate data set
reserved for this purpose (Fig. 2). To ensure that estimated STRFs
provided a good description of neurons in both V1 and V2, each
STRF was used to predict neuronal responses to a third reserved
cross-validation data set (David and Gallant, 2005), which was
collected using the same procedures used for the rest of the data.
The STRFs generally provide good predictions of responses to the
cross-validation set, accounting for 40% (V1) and 30% (V2) of
explainable variance (see Materials and Methods). The difference
in explainable variance between V1 and V2 is not significant ( p �
0.16; Kruskal–Wallis one-way ANOVA; df � 141); differences in
explainable variance between clusters (see below) are also not signif-
icant by the same measure. Note that these prediction results reflect

an extremely challenging test of the model: predicting neuronal re-
sponses frame-by-frame (�17 ms resolution) to arbitrary natural
stimuli that had not been used to fit the model. When predicting
responses to natural scenes, it is not realistic to expect to 100% of
explainable variance because of the high dimensionality of the stim-
ulus. We find that the typical coefficient between the actual neural
response and the predicted response is �0.3. Such a correlation co-
efficient is significant at a vanishingly small value, p � 10�7.

The rectified BWT model is appropriate for this analysis be-
cause it predicts the responses of V1 neurons better than any
other model we investigated (including rectified Gabor filters,
center-surround filters, and models incorporating contrast
normalization). This does not mean that the BWT itself is a

Figure 4. Dendrogram summarizing cluster analysis of the STRFs from the combined sample of 46 V1 and 96 V2 neurons.
Lengths of horizontal lines quantify the difference between pairs of STRFs. The bars on the right identify neurons from V1 (white)
and V2 (black). There are two significantly separated major clusters (clusters A and B, indicated by the pale red and blue regions;
p � 0.001, randomization test; the p � 0.01 criterion is indicated by t). Cluster A contains 43% (41 of 96) of the V2 neurons in the
sample and 78% (36 of 46) of the V1 neurons. Cluster A has two significant subclusters, A1 and A2 ( p�0.043; randomization test).
Neurons in subcluster A1 have conventional excitatory tuning and minimal suppressive tuning, whereas neurons in subcluster A2
are weakly tuned for orientation. Together, neurons in cluster A have functional properties consistent with those reported previ-
ously in V1. Cluster B contains 57% (55 of 96) of the V2 neurons and only 22% (10 of 46) of the V1 neurons. Cluster B also has two
significant ( p � 0.001; randomization test) subclusters. Neurons in both subclusters have conventional excitatory tuning but also
show strong suppressive tuning, which is not observed in V1. This suppressive tuning is strongest in subcluster B2.
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closer match to V1 (or V2) receptive fields than a Gabor filter;
on the contrary, Gabor filters are generally more accurate
models of cortical processing. However, the BWT forms a
complete, orthogonal code (unlike Gabor filters, which form
an overcomplete set). Thus, the BWT represents images with a
minimal number of parameters. This in turn means that BWT
STRFs contain fewer parameters than an analogous Gabor
model, and so these parameters can be estimated accurately
from a limited data set.

To confirm that our results were not dependent on the partic-
ulars of the rectified BWT models, we confirmed that numerous
other models gave qualitatively similar results.

The V2 population is heterogeneous
To compare shape representation in V1 and V2, we applied hier-
archical cluster analysis to the BWT STRFs estimated for the
combined sample of 46 V1 and 96 V2 neurons. To ensure that this
comparison did not merely reflect variability in simple orienta-
tion and spatial frequency tuning, all STRFs were converted to a
representation that is independent of the basic tuning character-
istics of each neuron (see Materials and Methods). The resulting
dendrogram is shown in Figure 4. Neurons in the combined sam-
ple are divided into two significantly separated major clusters
( p � 0.001, random permutation and reclustering) (see Materi-
als and Methods): V1 neurons (white rectangles) tend to fall in
cluster A (36 of 46; 78%), whereas V2 neurons (black rectangles)
are evenly distributed between the two clusters (41 of 96; 43% in

cluster A, remainder in cluster B). The dif-
ference in the distribution of V1 and V2
neurons across the two clusters is signifi-
cant (� 2 � 15.19; p � 9.6 � 10�5; n �
139; df � 1). These data suggest that area
V2 contains two functionally distinct sub-
populations, one functionally similar to
V1 (cluster A) and one functionally
unique to V2 (cluster B).

Spatial tuning of one-half of V2
neurons is similar to that found in V1
Because most V1 neurons occur in cluster 1,
neurons in this cluster should show tuning
consistent with the classical models of V1
tuning and should be describable in terms of
a small number of wavelet channels. Visual-
ization of the STRFs confirms that this is
true. Figure 5a shows the STRF of a typical
V1 neuron from cluster A (only the spatial
receptive field at peak temporal response la-
tency is shown). The strongest excitatory
wavelet channel (i.e., channel that is posi-
tively weighted) in this STRF (left-hand
panel, top) is vertical, medium spatial fre-
quency, phase-invariant, and located
within the CRF. The STRF also contains
suppressive low-frequency horizontal
channels within the CRF (left-hand
panel, bottom). This pattern is consis-
tent with the Gabor wavelet model of
V1. The excitatory channel describes the
classical spatial tuning of the neuron
(Daugman, 1980; Jones and Palmer,
1987b). The weak suppressive channels
(perpendicular to the primary excita-

tory tuning of the neuron) might appear to indicate the pres-
ence of some tuned suppression. However, the BWT STRF
model does not provide an explicit method for modeling con-
trast normalization or cross-orientation suppression. As a re-
sult, these nonspecific suppressive mechanisms manifest
themselves as suppression in low-frequency cross-orientation
wavelet channels. This was confirmed using model neurons.
Thus, the suppressive tuning in Figure 5a is likely to reflect
known mechanisms of contrast normalization (Heeger, 1992;
Carandini and Heeger, 1994; Zipser et al., 1996; Rossi et al., 2001)
and cross-orientation suppression (DeAngelis et al., 1992; Priebe
and Ferster, 2006).

Other V1 and V2 neurons in cluster A show similar classical V1
tuning. The STRFs of most of these neurons are dominated by a
single excitatory wavelet channel, and they show weak suppression at
90° to the primary excitatory orientation (subcluster A1). Some neu-
rons in this cluster have broad excitatory orientation tuning (sub-
cluster A2), a property reported previously in both V1 (Conway,
2001) and V2 (Hubel and Livingstone, 1985; Ts’o et al., 2001).

One-half of V2 neurons are distinguished by
strong suppression
Cluster B contains one-half of the V2 neurons and only a small
minority of V1 neurons. The relative paucity of V1 neurons in
this cluster suggests that these neurons represent properties of
natural images not typically represented in V1. Figure 5b shows
the STRF of a typical V2 neuron from cluster B. The strongest

a b

Figure 5. Representative STRFs for neurons in areas V1 and V2. These images are constructed by taking each BWT wavelet,
multiplying it by its weighting in the rectified BWT STRF, and summing the result. Excitatory (positive; shown here in red-green)
and suppressive (negative; blue-yellow) coefficients are shown separately. a, STRF for a typical V1 neuron from cluster A (subclus-
ter A1). The STRF is a spatial map of the tuning of the neuron (only the peak temporal response latency is shown). It is separated into
excitatory (red-green; top 4 � 4 panels) and suppressive components (blue-yellow; bottom 4 � 4 panels). These are further
subdivided by phase (rows) and orientation (columns). Each panel represents a region encompassing three times the size of the CRF
of the neuron. Top, The strongest excitatory wavelet is tuned for vertical orientation and intermediate spatial frequency, at all
phases. Bottom, Several weak suppressive wavelets tuned for horizontal orientation are located both within and outside the CRF.
This is a classical V1 neuron with weak cross-orientation suppression. b, STRF for a typical V2 neuron from cluster B (subcluster B2).
The structure of the panel is the same as in a. Top, The excitatory tuning of this neuron is similar to that shown in a. Bottom,
Suppression in this STRF is strong in multiple wavelet channels. Although the excitatory STRF of this neuron is compatible with the
classical Gabor model of V1, the suppressive STRF will confer complex feature selectivity quite different from that found in V1.
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excitatory wavelet channel in this STRF
(right-hand panel, top) is vertical, me-
dium spatial frequency, and located
within the CRF. This simple excitatory
tuning profile is similar to that found in
the excitatory channels of neurons in clus-
ter A. However, the STRF of this cluster B
neuron also contains several strong sup-
pressive channels at diverse orientations
and spatial frequencies, both within and
outside the CRF (right-hand panel, bot-
tom). This suppression is stronger and
more widespread than is found in the
neurons of cluster A (compare the V1
neuron shown in Fig. 5a). Most of the
neurons in cluster B have a similar pattern
of excitatory and suppressive structure:
their excitatory tuning is dominated by a
small number of wavelet channels and is
accompanied by strong suppressive tun-
ing from a larger number of wavelet chan-
nels. Similar patterns of suppressive
tuning have been reported previously in
area 18 of the cat cortex (Nishimoto et al.,
2006).

These data suggest that approximately
one-half of the V2 neurons incorporate
strong, tuned suppression from multiple
wavelet channels that is not observed in
V1. To quantify this difference, we calcu-
lated an excitation index, E, for each V1
and V2 neuron. The excitation index
summarizes the relative strength of exci-
tatory and suppressive wavelet channels
in each STRF (Fig. 6a, inset). The median
excitation index of the V1 sample (Fig. 6a,
0.73) is significantly higher than the me-
dian of the V2 sample (Fig. 6b, 0.28) ( p �
0.0042; Kruskal–Wallis one-way ANOVA;
df � 141). The strength of excitatory and
suppressive tuning in various subclusters
in the combined V1–V2 sample is summarized in Figure 7. To-
gether, these data confirm the substantial difference in tuned
suppression between areas V1 and V2. To demonstrate that this
extra suppressive tuning is genuinely tuned (rather than an arti-
fact of nonspecific suppression as seen in Fig. 5a), we performed
a number of control analyses, which are described below (see
Suppression in V2 is tuned).

To confirm that the V1–V2 distribution represents a genuinely
bimodal distribution, rather than a continuum, Hartigan’s dip
test was used as a measure of non-unimodality. The overall
V1–V2 distribution is significantly non-unimodal at p � 0.005,
and the V2 distribution is significantly non-unimodal at p �
0.002. The V1 distribution is not significantly non-unimodal
( p � 0.70). This confirms that there are two distinct clusters
within the V1–V2 distribution and that this results from the pres-
ence of two distinct clusters within V2. V1, however, is relatively
homogeneous.

Much of the rest of this report focuses on the functional prop-
erties of the two major clusters of V2 neurons. To facilitate dis-
cussion we refer to the V2 neurons that are functionally similar to
those in V1 (cluster A) as “weakly suppressed” neurons, and

those that are functionally distinct from V1 (cluster B) as
“strongly suppressed.”

Increased suppression in V2 relative to V1 is not a
modeling artifact
Using the rectified BWT STRF model, our sample of V2 neurons
showed stronger suppressive tuning than our sample of V1 neu-
rons (Fig. 6a– c). Since the rectified BWT is a novel model, it is
possible that this result is merely an artifact of the BWT model.
To ensure that this is not the case, the STRF estimation and
measurement of the excitation index were repeated using numer-
ous different STRF models (for details of all these models, see
Materials and Methods).

One possibility is that our results might be an artifact of the
spatial structure of the BWT filters. The BWT filters are qualita-
tively similar to V1 simple cells (tuned in space, spatial frequency,
and orientation), but they are not perfect models of V1 receptive
fields. Additionally, they do not contain any center-surround
filters, even though such receptive fields are found in V1. To
determine whether the spatial structure of the BWT affected our
results, the data were refit using alternative models with different
spatial structure. The BWT plus center-surround model supple-

a d
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Figure 6. Excitation index, E, quantifying the relative strength of excitatory versus suppressive tuning in each neuron. Inset, E
is calculated as a contrast ratio between the summed excitatory (h �) and suppressive (h �) weights assigned to the wavelets in
each STRF. a, Histogram of E across the sample of 46 V1 neurons. The median (0.73) and the cell shown in Figure 5a are marked.
b, Histogram of E for the sample of 96 V2 neurons. The median (0.28) and the cell shown in Figure 5b are marked. The median value
of E is significantly lower in V2 than in V1 ( p � 0.0042; Kruskal–Wallis one-way ANOVA; df � 141), indicating that suppression
is substantially stronger in V2 than in V1. The V2 distribution is significantly non-unimodal at p � 0.002 (Hartigan’s dip test using
1000 bootstraps). The V1 distribution is not significantly non-unimodal ( p � 0.70). c, Distribution of E for all neurons, broken
down into the clusters identified in Figure 4. Cluster B (pink, orange) contains neurons with significantly stronger tuned suppres-
sion than cluster A (cyan, purple; p �� 0.001, Welch’s t test, df � 121). The complete V1–V2 distribution is significantly
non-unimodal at p � 0.005 (Hartigan’s dip test using 1000 bootstraps). d, Breakdown of excitation index by animal, for V1
neurons. e, Breakdown of excitation index by animal for V2 neurons. No significant differences in the excitation index were found
for different animals in this study. f, Suppressive tuning in V2 is not caused merely by surround suppression. The rectified BWT STRF
for each V2 neuron was analyzed to determine the relative contributions of the CRF and nCRF to suppressive tuning. The suppres-
sive coefficients in each STRF were classified according to whether they were in the CRF (central square of the STRF at scale level 2)
(Fig. 1b) or nCRF (surrounding squares). The coefficients in the CRF and nCRF were summed separately, and a contrast index was
calculated as follows: C � (	h CRF � 	h nCRF)/(	h CRF � 	h nCRF). The distribution of C across the sample of 96 V2 neurons is
shown here. A value of 1 would indicate that tuned suppression came purely from the CRF; a value of �1 would indicate that tuned
suppression came purely from the nCRF. For most V2 neurons, the suppressive coefficients are mainly found in the CRF (values�0).
This indicates that the tuned suppression we observe in V2 cannot accurately be described as surround suppression.
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mented a complete set of BWT filters with a set of pixelated
center-surround filters. The rectified difference-of-Gaussians
and rectified pixels models replaced the BWT filters with circu-
larly symmetric filters.

Table 1, rows 2– 4, shows the results of fitting the data with
these alternative models. In each case, the proportion of explain-
able variance accounted for (in both V1 and V2) is equal to or
lower than the rectified BWT model. This indicates that the spa-
tial structure of the rectified BWT model has not adversely af-
fected its ability to describe the behavior of V1 and V2 neurons.
The values of excitation index in V1 and V2 vary somewhat from
model to model. However, in all cases, there is a significant dif-
ference in excitation index between V1 and V2 ( p � 0.01). This
indicates that our central result—that tuned suppression is stron-
ger in V2 than in V1—is not sensitively dependent on the spatial
structure of the STRF model used.

An additional possibility is that the difference in excitation
index arises because the rectified BWT model is a better model of
V1 neurons than of V2 neurons. This might result in different
distributions of BWT coefficients in V1 and V2, which in turn
might produce differences in the excitation index between the
two areas. To investigate this possibility, two measurements were
made of the relationship between fit quality and excitation index.
Figure 8a shows a scattergram of the total strength of negative
coefficients in each kernel (h�) against the total strength of pos-
itive coefficients (h�). The total strength of coefficients indicates
how many iterations the boosting algorithm has run through.
Thus, if the excitation index merely depended on fit quality, one
might expect to see some inhomogeneity in these distributions. In-
stead, the difference between V1 (open circles) and V2 (filled circles)
is clear in this plot and is distributed across the range of possible
values of h� and h�, indicating that there is no systematic bias.

Figure 8b shows a scattergram of excitation index against pre-
diction correlation coefficient. Again, if excitation index were
dependent on fit quality, one would expect to see a systematic
relationship here. Instead, it is clear that there is no such relation-

ship. From these two analyses, it is clear that the excitation index
effect is not an artifact of fit quality.

Increased suppression in V2 relative to V1 does not result
from an inappropriate choice of output nonlinearity
In principle, it is possible that our observation of increased tuned
suppression in V2 might merely result from a poor choice of
output nonlinearity. If the half-wave rectification used in the
rectified BWT model is inappropriate for visual neurons, the
model might provide a poor fit to the neuronal responses. To
determine whether this was the case, the data were refit using two
alternative models. These had the same spatial structure as the
rectified BWT, but used alternative output nonlinearities—rec-
tified with positive threshold and half-squaring—which are ar-
guably more appropriate for modeling neurons (for details, see
Materials and Methods).

Table 1, rows 5 and 6, shows the results of fitting the data with
these alternative models. In each case, the proportion of explain-
able variance accounted for (in both V1 and V2) is equal to or
lower than the rectified BWT model. This indicates that the out-
put nonlinearity used in the rectified BWT model is not inappro-
priate for describing the behavior of V1 and V2 neurons. The
values of excitation index in V1 and V2 are similar to those for the
rectified BWT model, and in all cases, there is a significant differ-
ence in excitation index between V1 and V2 ( p � 0.05). For
comparison, we also fit a simple linear model with no output
nonlinearity (Table 1, row 7). This model is notable because it fits
the data extremely poorly in both V1 and V2. This demonstrates
the inadequacy of linear models for describing the responses of
visual cortical neurons. Furthermore, the differences in excita-
tion index between V1 and V2 are not significant for this model.

These comparisons demonstrate that the increase in tuned
suppression in V2 is not an artifact of an inappropriate choice of
output nonlinearity. On the contrary, half-wave rectification de-
scribes the neuronal data just as well as other plausible nonlin-
earities. More importantly, the difference in excitation index
between V1 and V2 is robust, so long as the model contains some
output nonlinearity.

Suppression in V2 is tuned
Our results demonstrate that V2 neurons show more suppression
than V1 neurons. There are three possible explanations for this
increase in suppression. First, V2 neurons might have higher re-
sponse thresholds than V1 neurons. Alternatively, V2 neurons
might show stronger nonspecific suppression than V1 neurons.
Both of these hypotheses would suggest that the tuning of V2
neurons differs quantitatively but not qualitatively from tuning
in V1. A more interesting hypothesis is that the increase in sup-
pression results from the presence of suppressive mechanisms in
V2 that are tuned for specific aspects of the spatial structure of
natural images. This would suggest that the tuning of V2 neurons
is qualitatively different from the tuning of V1 neurons. To de-
termine which of these hypotheses is correct, the STRF estima-
tion was repeated using STRF models that incorporate a variable
threshold and nonspecific suppression.

To test whether the increase in suppression in V2 neurons
simply reflects an elevated response threshold, two models were
compared: the standard rectified BWT model and a logistic
model that incorporates a soft threshold. The logistic model is
identical with the rectified BWT model, except that instead of the
half-wave rectified linear output nonlinearity, it uses a logistic
output nonlinearity. The logistic is a sigmoid function, which
provides a generally accepted model of a neuron that has a re-

Figure 7. Mean excitatory and suppressive tuning for orientation energy of the subclusters
of the combined V1/V2 sample. For each neuron, orientation tuning was estimated by summing
separately the positive and negative wavelet coefficients at each orientation (0, 45, or 90°) in
the corresponding STRF. Orientation tuning was then averaged across the neurons in each
subcluster (A1, A2, B1, B2, as in Fig. 4). Neurons in subclusters A1 and A2 are dominated by
tuning at 0° (i.e., parallel to the strongest excitatory wavelet in their STRFs) and show very little
suppressive tuning. Neurons in subclusters B1 and B2 have excitatory tuning similar to those in
subclusters A1 and A2, but they also have strong suppressive tuning. Suppression is strongest in
subcluster B2. Error bars give the SEM.
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sponse threshold at low activation values, and saturates at high
activation values. By scaling and translating the logistic function,
it can be used to accurately model neurons with a wide variety of
different response nonlinearities. This includes (but is not lim-
ited to) neurons with half-squaring output nonlinearities and
neurons with varying thresholds.

If the difference between V1 and V2 merely reflected differ-
ences in the neural response threshold (or other differences in the
shape of the output nonlinearity), the logistic model would ex-
plicitly fit these differences. Thus, if this hypothesis was correct,
the logistic model would provide better predictions of neural
responses while using fewer suppressive wavelet channels than
the rectified BWT model. In fact, the logistic model produces
similar STRFs to the rectified BWT model, provides similar pre-
dictions (r � 0.39 in V1; r � 0.30 in V2) (Table 1, row 8), and
results in similar differences in excitation index between V1 and

V2 ( p � 0.001; Kruskal–Wallis one-way ANOVA; df � 141).
This indicates that the apparent increase in suppression in V2
does not merely reflect higher response thresholds in V2 relative
to V1.

Alternatively, it is possible that the apparent increase in sup-
pression in V2 relative to V1 reflects relatively stronger contrast
normalization (Heeger, 1992; Carandini and Heeger, 1994). To
evaluate this possibility, two variants of the rectified BWT STRF
model were compared: a contrast normalized model, in which
each image was contrast-normalized before being input to the
BWT model; and a contrast filter model, in which a single con-
trast filter (whose output was equal to the SD of the images) was
added to the bank of BWT filters. If the increased suppression in
V2 merely resulted from an increase in contrast normalization,
the STRFs produced by the contrast normalized and contrast
filter models should provide better predictions of neural re-
sponses than the rectified BWT model, and the difference in ex-
citation index between V1 and V2 should decrease. In fact,
neither of these models produces better predictions than the rec-
tified BWT model. In both cases, the difference in excitation
index does decrease; this suggests that nonspecific suppressive
mechanisms may be stronger in V2 than in V1. However, both
models continue to show a significant difference in excitation
index between V1 and V2 at p � 0.05 (Table 1, rows 9 and 10).
This indicates that the increase in suppression in V2 does not
merely reflect a stronger contrast normalization mechanism in
V2 relative to V1 and suggests that the suppressive mecha-
nisms in V2 are tuned for specific spatial features present in
natural images.

Another possibility is that the increased suppression in V2 is
the result of a surround suppression mechanism (DeAngelis et
al., 1994). To determine whether surround suppression is re-
sponsible for the difference in excitation index between V1 and
V2, the distribution of suppressive coefficients in the CRF and
nonclassical RF (nCRF) was measured. The majority of the sup-
pressive coefficients in the STRFs are located in the CRF, not the
nCRF (Fig. 6f), indicating that the suppressive mechanism in V2
cannot accurately be described as surround suppression.

Table 1. Comparison of rectified BWT and alternative STRF models

Name Basis set Nonlinearity

Proportion of
explainable
varianceaccounted
for(%)

Median excitation index (E)

V1 V2 V1 V2
Significance of
V1–V2 difference

Rectified BWT BWT �w�� and ��w�� 0.40 0.30 0.73 0.28 p � 0.004
BWT � center-surround BWT � center-surround �w�� and ��w�� 0.40 0.31 0.75 0.32 p � 0.014
Rectified difference-of-Gaussians Difference-of-Gaussians �w�� and ��w�� 0.25 0.20 0.47 0.18 p � 1 � 10 �5

Rectified pixels Pixels �w�� and ��w�� 0.21 0.17 0.48 0.07 p � 0.0001
Rectified with positive threshold BWT �w�� and ��w�� with threshold 0.39 0.30 0.81 0.30 p � 0.0001
Half-squaring BWT Half-squaring 0.17 0.10 0.91 0.47 p � 0.039
Linear BWT Linear 0.11 0.09 �0.07 0.01 p � 0.52
Logistic BWT Logistic output nonlinearity 0.39 0.30 0.50 0.15 p � 0.001
Contrast filter BWT � contrast term �w�� and ��w�� (BWT)

linear (contrast term)
0.40 0.29 0.58 0.28 p � 0.009

Contrast normalized BWT �w�� and ��w�� using
contrast-normalizedimages

0.31 0.24 0.63 0.38 p � 0.049

To demonstrate that the rectified BWT model provides a good functional description of neurons in V1 and V2, seven other STRF models were fit to the data acquired from each neuron. The fit models were then used to predict responses to
a separate validation data set (see Materials and Methods). In all cases, the predictions of the rectified BWT model are similar or better than those of the alternative models. The linear model provides particularly poor predictions, clearly
demonstrating the need to use appropriate nonlinear models to describe the responses of visual cortical neurons. To demonstrate that the increase in tuned suppression in V2 relative to V1 (Fig. 6a– c) is not merely an artifact of the rectified
BWT model, the excitation index, E, was calculated separately for each model, for all neurons in V1. The same procedure was then applied to the V2 neurons. The significance of the difference in the excitation indices for the sample of V1 and
V2 neurons obtained using the standard BWT model and each of the secondary models was then estimated by Kruskal–Wallis one-way ANOVA (df � 141 in all cases). In all cases except for the pure linear model, the difference between V1
and V2 is significant at p � 0.05. Thus, the increase in tuned suppression in V2 relative to V1 does not depend critically on the choice of STRF model.

a b

Figure 8. Measures of possible bias in the excitation index. a, Scattergram showing log of
the summed negative coefficients in each rectified BWT STRF against log of the summed posi-
tive coefficients. V2 neurons (filled circles) tend to have stronger negative coefficients than V1
neurons (open circles), regardless of the overall strength of the coefficients. This indicates that
the difference between V1 and V2 is not merely an artifact of overall coefficient strength (as
might be expected if the model simply provided a worse fit to V2 neurons than to V1 neurons).
b, Scattergram showing excitation index against prediction correlation coefficient (CC) (Pear-
son’s r). If excitation index were an artifact of fit quality, we would expect to see a strong
relationship between these two variables. In fact, we find that there is no strong relationship,
indicating that the difference between excitation index in V1 and V2 is not merely an artifact of
fit quality.
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These control analyses indicate that the increase in suppres-
sion in V2 does not merely result from an increase in the mean
response threshold of V2 neurons, or from an increase in the
strength of nonspecific suppressive mechanisms that are known
in V1. This strongly suggests that the observed increase in sup-
pression is the result of tuned suppressive mechanisms in V2 that
are selective for specific spatial features present in natural images.

Suppressive tuning in V2 confers selectivity for higher-order
image structure
The STRFs that we have estimated here provide an objective,
quantitative model of the way that V2 neurons integrate visual
information. However, the STRFs alone do not reveal which spe-
cific aspects of natural images are represented in V2. To address
this issue, we developed a procedure that enabled us to separately
visualize the stimulus properties that tend to excite and suppress
each neuron. The BWT STRFs were first decomposed into two
separate hyperchannels: one containing all of the excitatory chan-
nels and one containing all of the suppressive channels. These
hyperchannels were then used to filter a large set of natural im-
ages (n � 40,000). Finally, the images predicted to be excitatory
and suppressive for each neuron were aggregated into summary
plots.

Figure 9a summarizes the result of this analysis for the V1
neuron whose STRF is shown in Figure 5a. The horizontal axis
represents the response of the excitatory hyperchannel, and the
vertical axis represents the response of the suppressive hyper-
channel. A small subset of images has been projected onto the
plot to illustrate which images are predicted to evoke stronger or
weaker responses from the excitatory and suppressive hyper-
channels. This neuron has a strong excitatory hyperchannel that
is activated by images containing vertical structure (right-hand

side) and a weak suppressive hyperchan-
nel that is activated by images containing
horizontal structure (top). The predicted
response of the neuron is equal to the dif-
ference between the activation of the exci-
tatory and the suppressive hyperchannels.
This is shown by diagonal lines and by
shading indicating the overall response
strength. The neuron should respond
most strongly to images that activate the
excitatory hyperchannel and do not acti-
vate the suppressive hyperchannel (bot-
tom right; yellow and red regions). Since
the suppressive hyperchannel is relatively
weak for this neuron, most images lie to-
ward the bottom of the y-axis, indicating
that they only weakly activate the suppres-
sive hyperchannel. Thus, this V1 neuron
should respond fairly strongly to any im-
age containing vertical structure that
matches its excitatory hyperchannel, and
most images are predicted to elicit some
response (top left; blue region).

Figure 9b shows the same analysis for a
typical strongly suppressed V2 neuron
(cluster B). As for the V1 neuron shown in
Figure 9b, the excitatory hyperchannel of
this neuron is tuned for vertical structure
and the suppressive hyperchannel is tuned
for horizontal structure. However, the
suppressive hyperchannel is approxi-

mately twice as strong here as in Figure 9a. (Compare the many
images toward the top of Fig. 9b vs the number in similar loca-
tions in Fig. 9a.) This neuron is predicted to respond only to those
specific images containing vertical structure, as long as they acti-
vate the excitatory hyperchannel and do not activate the suppres-
sive hyperchannel. As a result, a smaller proportion of images
produce strong responses (bottom right; yellow and red regions),
and there are many more images that fail to produce any overall
activation (top left; blue region).

For both the V1 neuron (Fig. 9a) and the V2 neuron (Fig. 9b),
images that contain only vertical structure should activate the
excitatory hyperchannel and produce strong responses (red re-
gion). Images that contain some horizontal structure will also
elicit strong responses from the V1 neuron (yellow region), be-
cause this neuron does not possess a substantial suppressive hy-
perchannel. However, images that contain horizontal structure
will elicit only a weak response from the V2 neuron (white re-
gion), because those images will activate the strongly suppressive
hyperchannel. Thus, whereas the V1 neuron is tuned for vertical
energy, the V2 neuron is tuned for a specific configuration of
oriented elements. In order for the V2 neuron to respond
strongly, some wavelet elements must be present (those that
match the excitatory hyperchannel) and others must be absent
(those that match the suppressive hyperchannel).

The maps shown in Figure 9 suggest that many more stimuli
are likely to elicit a strong response from the weakly suppressed
V1 neuron than from the strongly suppressed V2 neuron (com-
pare proportion of stimuli falling in yellow and red portions of
Fig. 9a,b). This pattern suggests that suppression serves to in-
crease stimulus selectivity and reduce the range of stimuli that
will elicit a robust response. Thus, weakly suppressed neurons
tend to function as simple feature detectors for images whose

a b

Figure 9. Functional consequences of suppressive tuning in V1 and V2. a, The STRF of a typical V1 neuron from cluster A1,
decomposed into separate excitatory and suppressive hyperchannels. The x-axis quantifies the response of the excitatory hyper-
channel and the y-axis the suppressive hyperchannel. Red, yellow, and blue regions identify the images that elicit strong, medium,
and no responses from the neuron, respectively. Each hyperchannel was used to filter 40,000 natural images. A subset of the
images is plotted according to the responses of the hyperchannels. The excitatory hyperchannel of this neuron (x-axis) is vertically
tuned, and so responds to any image containing vertical structure (observe the variety of images in rightmost columns). The
suppressive hyperchannel ( y-axis) is weakly tuned for horizontal structure. This channel suppresses responses to images that
contain horizontal structure, so the neuron responds more strongly to isolated vertical edges (red region) than to complex images
containing vertical and horizontal structure (yellow region). However, these suppressive effects are weak in V1 and in the weakly
suppressed neurons in V2. b, Similar decomposition of the STRF of a typical strongly suppressed V2 neuron. The excitatory
hyperchannel (x-axis) of this neuron is also tuned for vertical structure, and the suppressive hyperchannel ( y-axis) is tuned for
horizontal structure. In this neuron, the suppressive hyperchannel is much stronger than the one shown in a. Therefore, many more
images produce only weak or zero responses (compare the number of images in the blue and white regions in Fig. 9a,b). A smaller
proportion of images are in the yellow and red regions in Figure 9b than in Figure 9a, indicating that tuned suppression has
increased the selectivity of the V2 neuron relatively to the weakly suppressed neuron in a.
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spectral structure matches the excitatory hyperchannel. In con-
trast, strongly suppressed neurons are selective for a specific com-
bination of features.

The pattern of suppression observed across the entire sample
of strongly suppressed V2 neurons is diverse, even after normal-
izing for the primary excitatory orientation. This suggests that
suppression increases both the complexity and diversity of stim-
ulus features that modulate responses of strongly suppressed
neurons in area V2, relative to V1 (Hegdé and Van Essen, 2000;
Ito and Komatsu, 2004).

Frequency pooling in V2 may support illusory
contour selectivity
Previous research has shown that many V2 neurons are selective
for illusory contours (von der Heydt et al., 1984; von der Heydt
and Peterhans, 1989). One way to build an illusory contour-
sensitive neuron in V2 would be to pool the rectified output of
many V1 neurons with different preferred spatial frequencies but
a single preferred orientation. By nonlinear summation of ori-
ented structure beyond the CRF, such a neuron could respond to
an extended contour even if the part of the contour within the
CRF was missing. Some of the neurons that we observed in cluster
B do appear to pool information across spatial frequency at a
single orientation (Fig. 10). In the neurons that have this prop-
erty, frequency pooling often spans several octaves. Frequency

pooling in V2 suggests that illusory contour selectivity in this area
is conferred by a general mechanism whose function is to reliably
represent edges in natural scenes. Natural edges are composed of
a broadband distribution of phase-aligned frequency elements at
a single orientation. The V2 neurons whose receptive field profile
matches natural edge structure are likely to form a more reliable
and explicit representation of edges than can be achieved by the
narrowband Gabor filters in V1.

Discussion
Using an unbiased natural stimulus set and nonlinear system
identification analysis, we have shown that area V2 is divided into
two functionally distinct subpopulations: one whose spatial tun-
ing characteristics are functionally similar to area V1, and one
that is functionally distinct. Both V1 and V2 neurons have similar
excitatory spatial tuning profiles, but the functionally distinct V2
neurons (approximately one-half of the sample) have strong sup-
pressive spatial tuning rarely seen in V1.

Functional significance of tuned suppression in V2
Previous studies that used sinusoidal gratings suggested that tun-
ing in V2 is fundamentally similar to that found in V1 (Levitt et
al., 1994); other studies using complex stimuli (von der Heydt et
al., 1984; von der Heydt and Peterhans, 1989; Hegdé and Van
Essen, 2000; Zhou et al., 2000; Ito and Komatsu, 2004) suggested
that V2 neurons are functionally distinct from those in V1. Our
experiment resolves this longstanding controversy by demon-
strating that neither extreme view is correct: V2 is functionally
heterogeneous, just as it is anatomically heterogeneous (Sincich
and Horton, 2002). This is consistent with the findings of one
other recent study of V2 (Anzai et al., 2007). Note, however, that
our experiments did not investigate all stimulus dimensions
to which V2 neurons are sensitive [e.g., binocular disparity
(Thomas et al., 2002) and color (Lu and Roe, 2007)]. Additional
studies will therefore be required to determine whether the sub-
population of V2 neurons that appears to be functionally similar
to those found in V1 can be distinguished along some other di-
mension that was not examined in our experiment.

The functional role of tuned suppression is inherently difficult
to interpret, because suppression reduces neural responses. Our
analysis suggests that the primary function of suppression in V2 is
to provide an explicit representation of spatial configurations of
features that are not represented explicitly in V1. Although neu-
rons in both V1 and V2 will respond to a single Gabor wavelet
presented in isolation, only the strongly suppressed V2 neurons
can reliably distinguish between images containing the same
wavelet in different contexts. Recall that any natural image can be
viewed as the linear sum of many sparsely distributed Gabor
wavelets (Field, 1994). Under natural viewing conditions the re-
sponses of both V1 neurons and the weakly suppressed V2 neu-
rons will be primarily determined by the probability that the
sparse components of each natural image (i.e., the constituent
Gabor wavelets) match the excitatory components of the STRF.
In contrast, the responses of strongly suppressed V2 neurons will
be determined by the joint probability of occurrence of a few
excitatory Gabor wavelets and all of the many Gabor wavelets that
match the suppressive components of the STRF. We speculate
that the structure of the suppressive components of these recep-
tive fields are optimized to match the higher-order statistics of
natural scenes (Geisler et al., 2001).

The STRFs we have estimated for V2 neurons provide a quan-
titative functional model of how complex stimulus selectivity in
V2 (von der Heydt and Peterhans, 1989; Hegdé and Van Essen,

Figure 10. STRF of one V2 neuron that pools across spatial frequency. The excitatory STRF of
this neuron (top 4 rows) is tuned for horizontal orientation at several spatial scales (and so
several spatial frequencies), both within and beyond the CRF. A mechanism that pools informa-
tion at a single orientation, but across spatial position and spatial scale, may confer selectivity
for both real and illusory contours in natural images.
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2000; Ito and Komatsu, 2004) is constructed by combining the
relatively simple receptive fields found in V1. Selectivity for com-
plex features in single V2 neurons is not simply the result of
excitatory pooling over many V1 neurons. Instead, each V2 neu-
ron combines excitatory pooling from a relatively small number
of similar V1 neurons with suppressive pooling from much larger
and more diverse set of V1-like subunits. Our findings are con-
sistent with studies of other sensory areas that have suggested that
inhibitory interneurons and synaptic depression play a critical
role in determining neuronal tuning (Freeman et al., 2002; Wehr
and Zador, 2003). Many current computational theories of vision
emphasize the role of excitatory feedforward connections be-
tween cortical areas (Riesenhuber and Poggio, 1999; Serre et al.,
2007). Our data show the importance of incorporating tuned
suppression into future models.

Effect of model structure
In this study, we fit a variety of nonlinear STRF models to the
same data set and compared the fits provided by these models.
Comparison of these fits raises two issues for modeling visual
neurons. First, it demonstrates the importance of nonlinearity in
modeling visual neurons. Of the models we used, the linear
model provides by far the worst predictions of neural behavior in
both V1 and V2. Similarly, the linear model is the only model that
does not show a significant difference in excitation index between
V1 and V2.

Second, this comparison shows that the spatial structure of the
filters used in the STRF model is relatively unimportant. All of the
nonlinear models provided reasonable predictions of V1 and V2
responses. Similarly, differences in excitation index between V1
and V2 were consistent, regardless of the set of the model used.
This suggests that building nonlinear models of visual neurons
may not be as difficult as is generally assumed. It is not necessary
to use a truly biologically accurate model, because many plausible
models will provide good descriptions of neural behavior.

Natural stimuli
In this study, we investigated neural behavior using natural stim-
uli. Such stimuli present serious challenges for neurophysiology
experiments. First, they have complex correlational structure that
must be accounted for when calculating STRFs. The BWT STRF
model used here solves this problem by providing a computa-
tionally efficient way of estimating accurate STRFs despite the
presence of stimulus correlations.

An additional problem arises because natural stimuli have
very high dimensionality. In a typical experiment using grating
stimuli, the gratings vary along only a few dimensions (spatial
frequency, orientation, etc.). As a result, most of the tuning space
of a neuron (and therefore its response variance) is not explored
by such experiments. In contrast, the natural scenes used in this
experiment have very high dimensionality (they were typically
shown at 128 � 128 pixels, giving 2 16,384 dimensions, although
stimulus correlations reduce their effective dimensionality). As a
result, natural scenes probe a large portion of the space of a neu-
ron, and of its response variance. Producing a model that can
accurately describe the responses of the neuron throughout this
high-dimensional space is challenging, and this is reflected in the
relatively low prediction scores obtained by all the models in this
study.

Natural stimuli also have important advantages for under-
standing the behavior of sensory neurons. For example, it is
difficult to observe the interaction between excitation and sup-
pression without using natural stimuli. Simple stimuli such as

sinusoidal gratings are likely to stimulate neurons only in simple
ways (i.e., they may produce excitation without suppression or
suppression without excitation). It is only by using complex stim-
uli that we can stimulate excitatory and suppressive channels
simultaneously, and thereby investigate the interactions between
excitation and suppression. Natural stimuli evoke ecologically
relevant patterns of excitation and suppression, for which neu-
rons are likely to be tuned. Complex, natural stimuli therefore
provide an ideal way to uncover these subtle interactions.

To understand how the brain represents and processes visual
input outside the laboratory, it is essential to understand the
response of neurons to natural stimuli. However, natural stimuli
are inevitably complex and so it is difficult to use them in con-
trolled neurophysiological experiments. The nonlinear system
identification approach used here can overcome many of the
drawbacks of using natural images (Wu et al., 2006). Most im-
portantly, nonlinear system identification provides an objective
and quantitative procedure for modeling the stimulus–response
relationship in terms of an explicit, biologically plausible model
(in this specific case, the Berkeley wavelet transform). This gen-
eral approach can also be applied to higher visual areas. For
example, it could be used to understand how the neural represen-
tations in areas V4 and IT are constructed by excitatory and sup-
pressive combination of the nonlinear outputs of neurons in V1
and V2. Our results suggest that functional characterization of
higher-order visual neurons will be facilitated by the use of com-
plex, naturalistic stimuli, combined with quantitative nonlinear
system identification analysis.
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