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The Cerebellum Harbors a Circadian Oscillator Involved in
Food Anticipation
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The cerebellum participates in motor coordination as well as in numerous cerebral processes, including temporal discrimination.
Animals can predict daily timing of food availability, as manifested by food-anticipatory activity under restricted feeding. By studying ex
vivo clock gene expression by in situ hybridization and recording in vitro PerI-luciferase bioluminescence, we report that the cerebellum
contains a circadian oscillator sensitive to feeding cues (i.e., whose clock gene oscillations are shifted in response to restricted feeding).
Food-anticipatory activity was markedly reduced in mice injected intracerebroventricularly with an immunotoxin that depletes Purkinje
cells (i.e., 0X7-saporin). Mice bearing the hotfoot mutation (i.e., Grid2 ho/hoy have impaired cerebellar circuitry and mild ataxic pheno-
type. Grid2"" mice fed ad libitum showed regular behavioral rhythms and day-night variations of clock gene expression in the
hypothalamus and cerebellum. When challenged with restricted feeding, however, Grid2"*"* mice did not show any food-anticipatory
rhythms, nor timed feeding-induced changes in cerebellar clock gene expression. In hypothalamic arcuate and dorsomedial nuclei,
however, shifts in Perl expression in response to restricted feeding were similar in cerebellar mutant and wild-type mice. Furthermore,
plasma corticosterone and metabolites before mealtime did not differ between cerebellar mutant and wild-type mice. Together, these
data define a role for the cerebellum in the circadian timing network and indicate that the cerebellar oscillator is required for anticipation

of mealtime.

Introduction

A circadian timing system made of a network of cerebral clocks
and peripheral oscillators plays a crucial role in the anticipation
of 24 h predictable environmental changes, such as the light-dark
cycle and food availability. Central to the circadian system is a
master clock, located in the suprachiasmatic nuclei that underlie
entrainment to light (Ralph et al., 1990; Meijer and Schwartz,
2003; Hastings et al., 2007).

When feeding opportunity is limited to a short temporal win-
dow each day at the same time [restricted feeding (RF)], animals
are able to anticipate the time of food access. Food-anticipatory
rhythms include wheel-running activity, behavioral arousal or
body temperature (Mistlberger, 1994; Mendoza, 2007). Sched-
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uled restricted feeding is a dominant synchronizer for circadian
oscillations in peripheral organs, such as the liver (Damiola et al.,
2000; Hara et al., 2001; Stokkan et al., 2001). Numerous argu-
ments, however, suggest that food anticipation does not result
from conditional responses or interval measurements, but is the
output of a circadian (i.e., self-sustained) clock (Mistlberger,
1994), most likely located in the brain (Davidson et al., 2003).
The exact location of the food-entrainable clock remains uncer-
tain, and it may actually reside in a network of coupled structures.
Furthermore, food anticipation is expressed even if the suprachi-
asmatic nuclei are lesioned (Stephan et al., 1979; Marchant and
Mistlberger, 1997). Despite extended investigation, targeted le-
sions in numerous brain structures within the forebrain and the
brainstem led to the same negative conclusions (Mistlberger,
1994; Stephan, 2001). Food-anticipatory behaviors are reduced
after only a few cerebral lesions, such as in the parabrachial nu-
cleus (Davidson et al., 2000) and the core of the accumbens nu-
cleus (Mendoza et al., 2005b). Orexinergic cues mediated by
circulating ghrelin synthesized in the stomach enhance arousal
related to food anticipation (Blum et al., 2009; LeSauter et al.,
2009), while anorexigenic cues mediated by leptin may inhibit
food anticipation (Mistlberger and Marchant, 1999).

The cerebellum is traditionally considered as a key structure
for motor coordination (Ebner, 1998; Shadmehr and Krakauer,
2008). In addition, the cerebellar network participates in motor
and spatial learning (Lalonde and Botez, 1990), as well as moti-
vational processes (D’Agata et al., 1993; Caston et al., 1998). Fur-
thermore, the cerebellum is engaged in tasks requiring temporal
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discrimination in the seconds-to-minutes range (Ivry et al., 2002;
Mauk and Buonomano, 2004). The possible role of the cerebel-
lum in the circadian scale has not been studied.

Interestingly, besides the well studied suprachiasmatic nuclei,
the cerebellar cortex belongs to the cerebral regions in which
clock gene rhythms have been detected (Akiyama et al., 1999;
Namihira et al., 1999; Farnell et al., 2008), suggesting that the
cerebellum could contain a circadian oscillator. Moreover, dur-
ing meal anticipation, glucose utilization is specifically reduced in
the cerebellar cortex (de Vasconcelos et al., 2006) while c-fos ex-
pression is increased in this structure (Poulin and Timofeeva,
2008). Therefore, the goal of this study was to explore the poten-
tial involvement of the cerebellum in food anticipation through a
combination of behavioral, targeted lesion, mutant phenotyping
and molecular approaches.

Materials and Methods

Animals, housing, and diet

Two-month-old male C3H and C57BL/6] mice were purchased from
Charles River Laboratories for the hypocaloric feeding and OX7-saporin
experiment, respectively. Grid2"”* mice on C57BL/6] background were
bred and studied in our animal care facilities (Animal resource and ex-
perimentation platform, Chronobiotron, Neurosciences Federation of
Strasbourg, IFR37, France). Two- to three-month-old, sex-matched mu-
tant mice and wild-type littermates were used here. PerI:luciferase trans-
genic rats (Yamazaki et al., 2000) were bred in our animal care facilities
kept in home cages in the same room conditions as those reported above
for mice. All animals were housed in individual cages with running
wheels, kept at 21 = 1°C under a 12:12 h light-dark cycle (lights on at
07:00 A.M.) and had ad libitum access to tap water and food (standard
chow pellets, 105; SAFE) for at least 2 weeks before the onset of experi-
ment. Animals were weighed weekly during the whole experiment. Food
intake during restriction was monitored by weighing food before and
after food access.

All experiments were performed in accordance with the rules of the
European Committee Council Directive of November 24, 1986 (86/609/
EEC) and the French Department of Agriculture (license number 67-88
to E.C.).

Intracerebroventricular injections of OX7-saporin

The immunotoxin OX7-saporin, which targets the antigen Thy-1.1, a
cell-surface protein, selectively kills Purkinje cells when infused into the
ventricles (Mattsson et al., 2004; Nolan and Freeman, 2006). Under gas-
eous anesthesia [2% isoflurane in O,/N,O (50:50)], mice were set in a
Kopf stereotaxic apparatus. A micropipette, connected to a 2 ul Hamil-
ton syringe, was lowered into the lateral ventricle. The stereotaxic coor-
dinates for the tip relative to bregma were —0.1 mm anterior, =0.9 mm
lateral, and —3 mm ventral to the skull surface. Two microliters contain-
ing 0.12,0.25 or 0.50 ug of OX7-saporin (Advancing Targeting Systems)
or vehicle (i.e., PBS) was then infused at a speed of 1 ul/min. The mi-
cropipette was left in place for additional 5 min before removal to allow
for diffusion.

Immediately after surgery, mice were injected intramuscular with
0.03 ml/100 g of analgesic solution (buprenorphine hydrochloride,
Sigma) to reduce postoperative pain. Mice were allowed 7 d to recover
from surgery.

Telemetry recordings of wheel-running activity, locomotor activity,
and body temperature

E-mitter (battery free) telemetry devices (MiniMitter Co.) measuring
general motor activity (called here locomotor activity) and body temper-
ature were implanted intraperitoneally under gaseous anesthesia [2%
isoflurane in O,/N,O (50:50) ]. Wheel-running activity, locomotor activ-
ity and body temperature were recorded every 5 min (Vitalview acquisi-
tion system, MiniMitter).

Protocols of timed feeding and brain sampling
Experiment 1. To study the rhythmic expression of clock genes in the
cerebellum, mice under a light—dark cycle (LD) were used under two
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different feeding conditions. A group had free access to food (food ad
libitum, AL), while another group (hypocaloric feeding: HF) was submit-
ted to a temporal calorie restriction paradigm, in which animals received
the 66% of daily food intake at midday [Zeitgeber time (ZT)6] for at least
3 weeks as described previously (Mendoza et al., 2005a; Feillet et al.,
2006). On the last day of food restriction, mice were killed with isoflurane
overdose and decapitated in 8 groups of 4 mice, at 3 h intervals starting at
ZT0. Mice sampled after ZT6 were fed at the usual time on that day.

Experiment 2. Young adult Perl:luciferase transgenic rats (n = 8) were
kept under LD cycle and synchronized to restricted feeding schedules
with 6 h to food access starting at midday (from ZT6 to ZT12). Rats
under ad libitum food conditions were used as control (n = 8). After 20 d
of restricted feeding conditions, animals were killed with intraperitoneal
pentobarbital overdose 2 h before lights off (ZT10) and brains were
rapidly removed for bioluminescence recording.

Experiment 3. One week after OX7-saporin lesions (# = 6 per group),
wheel-running activity of mice was recorded under LD conditions with
food ad libitum. Then, animals were exposed to temporal restricted feed-
ing during 15 d. The duration of daily food access lasted 8 h (from ZT4 to
ZT12). Despite this relatively long access to food, 3 treated animals died
for unknown reason (two having received a dose of 0.12 ug of OX7-
saporin and another one of the 0.50 ng dose group). After 2 weeks of food
restriction, animals were not fed during daytime (i.e., fasting test). The
same day, they had free access to food from lights offset (i.e., ZT12) and
they were subsequently transferred to constant darkness conditions
(DD). After 2 weeks under these conditions, animals were killed with
isoflurane overdose and perfused for cerebellar histology.

Experiment 4. Cerebellar mutant (i.e., Grid2"* and Grid2"” h") mice
and wild-type littermates were kept under a LD cycle and subjected to
restricted feeding schedules with a 6 h access to food from ZT6 to ZT12
(lights off) during 15 d. After food restriction, animals were transferred
to DD conditions and fed ad libitum.

Another set of Grid2"”"* mice and wild-type littermates were kept
under DD conditions with food ad libitum before exposing them for 3
weeks to a restricted feeding schedule of 6 h food access, starting at 12:00
AM. (geographical time). After food restriction, animals were main-
tained in DD and fed ad libitum for 2 weeks.

For clock gene and biochemical analysis, Grid2"*" and wild-type
mice under a LD cycle were either fed ad libitum or exposed to 6 h
restricted feeding during 2 weeks, as above. Mice were killed with isoflu-
rane overdose at ZT6 (i.e., just before mealtime for food-restricted mice)
and 12 h later (ZT18).

In situ hybridization

Eighteen micrometer coronal sections of mouse brains were cut in a
cryostat. Antisense RNA probes were transcribed in the presence of a*°S-
UTP (1250 Ci/mmol, PerkinElmer) according to the manufacturer’s
protocol (MAXIscript, Ambion). Here we used riboprobes for rPerl
(GenBank accession number AF156986), mPer2 (GenBank accession
number NM016974) mRev-erba (GenBank accession number NM145775)
and mDbp (GenBank accession number NM016974). Cerebellar sections
were fixed in 4% phosphate-buffered paraformaldehyde, rinsed twice
with PBS and then acetylated twice in 0.1 M triethanol-amine, washed
again with PBS and dehydrated in a graded ethanol series. Sections were
hybridized overnight with denatured antisense riboprobe (1.10” cpm/ml
of hybridization medium buffer) in a humid chamber at 54°C with ra-
diolabeled probe in a solution containing 50% deionized formamide,
10% sulfate dextran, 1X Denhardt’s solution, 2X SSC (sodium citrate
saline), 0.5 mg/ml salmon sperm DNA, 0.25 mg/ml transfer RNA, and 10
mM dithiothreitol. Sections were then rinsed with SSC, treated with ribo-
nuclease A (Sigma), rinsed with stringency washes of SSC and dehy-
drated in a graded ethanol series. Slices and radioactive standards were
exposed for 5 d to an autoradiographic film (Biomax MS-1 Kodak,
Sigma). Standards were included in each cassette to verify that the mea-
sured values of optical densities were in the linear response range of the
film. Densitometric analysis of hybridization signals was performed us-
ing ImageJ (NIH). The optical density of specific signal was calculated by
subtracting the intensity of staining background area measured in the
molecular layer of the cerebellum area where no hybridization signal was
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detected, from that measured in the Purkinje/granular layers. Measures
were made in the cerebellar vermis on three slices and averaged for a
given brain. Measures in the hypothalamus were performed as previously
described (Feillet et al., 2008). Data were expressed as relative optical
density values.

Recording of bioluminescence

Perl activity was assessed by measuring bioluminescence from cerebral
tissues (cerebellum and suprachiasmatic region) harvested from Perl:
luciferase transgenic rats, following a method previously described
(Yamazaki and Takahashi, 2005). Rats were killed 2 h before lights off
and brains were rapidly removed and placed in cold Hanks basic salt
solution (HBSS, H1641,Sigma) containing 0.035% of sodium bicarbon-
ate (58761, Sigma), HEPES (10 mm, H0887, Sigma) and antibiotics (100
pg/ml penicillin and 100 U/ml streptomycin, P433, Sigma). Coronal
sections (500 wm thick) of both suprachiasmatic region and cerebellum
were made using a stainless steel rat brain matrix (Cat. No. SA-2120,
Harvard Apparatus). We used a pair of scalpels to cut the brain regions
into small sections (1.5- to 2.0-mm-thick squares). Then tissues were
cultured on Millicell culture membranes (PICMORG 50, Millipore) in a
35 mm culture dish with 1.0 ml of DMEM (DMEM, D2902, Sigma)
supplemented with 0.35% D(+) glucose (G7021, Sigma), sodium bicar-
bonate (0.035%), 10 mm HEPES, B27 (2% Invitrogen 17504 —044), an-
tibiotics (25 ug/ml penicillin and 25 U/ml streptomycin), and 0.1 mm
beetle luciferin (Promega, E1602). Culture dishes were sealed with vac-
uum grease (silicon grease, Bardahl) and set in a Lumicycle device (Ac-
timetrics) kept in a 37°C incubator for recording. Lumicycle Analysis
software (Actimetrics) was used to calculate the peak time (acrophase) of
Perl:luciferase rhythms from the raw data.

Immunohistochemistry

In experiment 1, to study the rhythmic expression of PER2 in the cere-
bellum, mice under LD cycle were fed with food ad libitum or hypocaloric
feeding for 2 weeks and killed with isoflurane overdose and perfused at 6
different 4 h intervals from the 24 h cycle (n = 4 per group and time
point). Brains perfused with 50 ml of 0.9% saline followed by 50 ml of
cold 4% paraformaldehyde (PAF) in 0.1-M phosphate buffer (PB; pH
7.4) were removed, postfixed (overnight in 4% PAF at 4°C) and trans-
ferred to a cryoprotectant solution (buffered 30% sucrose) for 72 h at
4°C. Brains were then frozen in isopentane at —60°C and then stored at
—80°C. Thirty wm coronal cryostat sections were cut through the cere-
bellum. Free-floating sections were washed in cold 50 mm Tris-buffered
saline (TBS; pH 7.4; Sigma) and incubated in a solution of 3% of H,O,
(Sigma-Aldrich) in TBS for 30 min at room temperature. Sections were
then rinsed in TBS, and incubated for 2 h in a blocking solution contain-
ing 10% normal donkey serum in TBS with 0.1% Triton X-100 (0.1%
TBS-X), followed by an incubation in the primary antibody (in 0.1%
TBS-X plus 10% normal donkey serum) for 24 h at 4°C. We used a rabbit
polyclonal anti-PER2 (1:1000, affinity purified, raised against an epitope
mapping the C terminus of mouse PER2, Alpha Diagnostic Interna-
tional). Sections were then rinsed in TBS-X and incubated for 2 h at 4°C
with a biotinylated anti-rabbit IgG made in donkey (Jackson Immuno-
Research), diluted 1:2000 with 0.4% TBS-X. Thereafter, sections were
rinsed in TBS-X and incubated for 1 h at room temperature with an
avidin-biotin-peroxidase complex (Vectastain Standard Elite ABC Kit;
Vector Laboratories). Next, sections were rinsed twice in TBS for 10 min,
and incubated with 0.025% 3,3'-diaminobenzidine (Sigma) with 0.01%
H,0, in 50 mm Tris buffer. Thereafter, sections were rinsed with TBS,
wet-mounted onto gel-coated slides, dehydrated through a series of al-
cohols, soaked in xylene, and coverslipped with EUKITT. The number of
immunoreactive cells was determined using NIH Image] software.

To assess Purkinje cells loss after OX7-saporin treatment (experiment
3), brains were processed as above, except that the primary antibody was
a rabbit polyclonal anti-calbindin D-28K (1:20,000, Sigma).

To visualize expression of calbindin D-28K and PER?2 in the Purkinje
cells of Grid2"’"* and wild-type mice (experiment 4), mice fed ad libitum
were deeply anesthetized with a mixture of 5% ketamine and 5% xylazine
(0.1 ml of the mix per 30 g, i.p.) and transcardially perfused in the morn-
ing with 4% PAF in 0.1 M PB. Brains were then immersed overnight in the
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same fixative at 4°C and then dehydrated in graded ethanol before im-
mersion in iso-butanol for 4 d and embedding in paraffin. Paraffin
sections (8 wm thick) were cut with a microtome (Leica). After deparaf-
finization in toluene and rehydration in decreasing concentrations of
ethanol, the sections were rinsed in PB saline (PBS) and preincubated in
a blocking solution of PBS containing 3% normal goat serum (NGS) and
0.5% Triton X-100 for 1 h. The sections were then incubated for at least
24 h in the dark with a mixture of rabbit polyclonal antibodies raised
against PER2 (IgG Alpha Diagnostic International) and mouse mono-
clonal antibodies raised against anti-calbindin D-28K (Sigma) diluted,
respectively, at 1/1000 and 1/300 in PBS containing 0.5% Triton and
0.3% NGS. The sections were rinsed in PBS containing 0.05% Triton and
incubated for 3 h with Alexa 488 goat anti-rabbit (Invitrogen) and Alexa
546 goat anti-mouse (Invitrogen) antibodies respectively diluted 1/2000
and 1/1500 in PBS containing 0.3% Triton. The sections were finally
rinsed in PBS and mounted in Mowiol before examination with a fluo-
rescence microscope (Axioskop-II Zeiss). Control procedures included
omission of the primary or secondary antibodies and, incubation with
supernatant resulting from the centrifugation of anti-PER2 antibodies
(diluted 1/1000) preincubated with specific antigenic mouse PER2 pep-
tide (Alpha Diagnostic International, diluted 1/500 —1/50).

Blood sampling for serum determinations

Grid2""" and wild-type mice exposed to LD cycle and restricted feeding
schedules were killed at two different time points ZT6 (just before meal-
time) and ZT18 (6 h after lights off). Brains were removed for in situ
hybridization (see above) and trunk blood (1-1.5 ml) was collected in 2
ml Eppendorf tubes containing 10 ul of 4% EDTA. Blood was centri-
fuged at 5000 rpm for 10 min to obtain blood serum. Serum aliquots of
100 pl were frozen at —80°C for subsequent determination by colorimet-
ric methods of plasma concentrations of glucose (method of Trinder,
Glucose GOD-PAP Kit BIOLABO, REF: LP80009), free fatty acids
(method ACS-ACOD; Kit NEFA-HR2 Wako) and triacylglycerides
(commercial diagnostic kit Cat. no. TR0100, Sigma). Corticosterone
concentrations were determined by enzyme immunoassay (EIA; Immu-
nodiagnostic Systems).

Analysis of activity and temperature data

Daily rhythms of wheel-running activity, locomotor activity and body
temperature under a light-dark cycle were analyzed with ClockLab soft-
ware (Actimetrics). Activity profiles were plotted using SigmaPlot soft-
ware. Food-anticipatory activity (FAA) and thermogenesis (FAT) were
defined as increase in wheel-running, general activity and temperature
rise occurring during the 3, 2 and 1 h before mealtime.

Statistical analyses

Data are presented as means = SEM. Unpaired Student’s ¢ test was used
to compare two groups. One-way and two-way analyses of variance
(ANOVA) for repeated and independent measures followed by post
hoc comparisons with the LSD Fisher test were used to compare more
than two groups. All analyses were performed using Statistica soft-
ware (Statistica 8.0, StatSoft).

Results

Expression of clock genes and proteins in the cerebellum

To assess the putative sensitivity of the cerebellum to feeding
cues, we first challenged mice with daytime hypocaloric feeding.
This paradigm involves a restricted feeding schedule that induces
strong food-anticipatory activity, alterations in the suprachias-
matic clockwork and body mass loss (Mendoza et al., 2005a;
Feillet et al., 2006). Expression of clock genes and proteins in
the cerebellum was studied by using in situ hybridization and
immunohistochemistry, respectively. In mice fed ad libitum
(i.e., with free access to food), rhythmic expression of Perl and
Per2 genes in the cerebellum was maximal in early night
(ZT15, i.e., 3 h after lights off, p < 0.01; Fig. 1A,B), while
expression of PER2 protein peaked at ZT20 ( p < 0.01; supplemental
Fig. S1, available at www.jneurosci.org as supplemental material).
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internal granular layer; ML, molecular layer. Scale bars, 50 pm.

Interestingly, PER2 expression in the cerebellum was restricted to
the Purkinje cells (Fig. 2A-C; supplemental Fig. S1, available at
www.jneurosci.org as supplemental material). Control procedures for
PER2 immunohistofluorescence are shown in supplemental Fig. S2,
available at www.jneurosci.org as supplemental material. Rev-
erba.and Dbp genes were also expressed in a diurnal manner ( p <
0.01) with a peak in late daytime (ZT9) and early night (ZT14),
respectively (Fig. 1A,B). In response to daytime hypocaloric
feeding, Perl and Per2 expression was phase-advanced by 9 h
(p < 0.01; Fig. 1A,B). Expression of PER2 in hypocalorie-fed
mice, albeit dampened, was also markedly phase-advanced (sup-
plemental Fig. S1, available at www.jneurosci.org as supplemen-
tal material). Furthermore, the timing of Rev-erba and Dbp
expression in the cerebellum was advanced by 3 and 6 h, respec-
tively, compared with ad libitum food conditions ( p < 0.01; Fig.
1A, B). This first set of data clearly indicates that the cerebellum
expresses clock components whose expression can be modified
by timed feeding conditions.

Double PER2 and calbindin D-28K immunofluorescent labeling of Purkinje cells in the cerebellar cortex of wild-type
and cerebellar mutant (Grid2"°) mice. The somatodendritic compartment of the wild-type (WT) and Grid2"*"° (HO/HO) Purkinje
cells (arrow) display green PER2 (A, D) and red calbindin (B, E) immunofluorescence. C, Merge of A and B; F, merge of Dand E. |GL,

Bioluminescence of Perl:luciferase in
the cerebellar cortex

To determine whether the cerebellar cor-
tex is capable of generating intrinsic circa-
dian rhythmicity, we then monitored
Perl:luciferase bioluminescence in cere-
bellar and suprachiasmatic slices from rats
fed ad libitum. Both regions displayed sus-
tained circadian rhythms of Perl:lucif-
erase expression (8/9 and 5/9 in the
suprachiasmatic region and cerebellar
cortex, respectively), albeit those in the
cerebellum were of lower amplitude, con-
sistent with earlier observations in other
extra-suprachiasmatic brain regions (Abe
et al.,, 2002). In that study, Perl:luciferase
expression was found not to be clearly
rhythmic in a small set of cerebellar sam-
ples. Here Perl:luciferase expression
reached its maximum in the suprachias-
matic nuclei at projected ZT8.1 = 0.4 h
(i.e., late subjective day; Fig. 3A, G) as pre-
viously described (Abe et al., 2002) and in the cerebellar cortex at
projected ZT14.0 = 1.1 h (i.e., early night; Fig. 3B,G).

To determine whether the cerebellar circadian rhythmicity
was sensitive to the synchronizing effects of timed feeding condi-
tions, we exposed Perl:luciferase rats to temporally restricted
feeding diet. The rats showed regular food-anticipatory activity
(data not shown). We sampled their suprachiasmatic nuclei and
cerebellum for monitoring in vitro Perl:luciferase biolumines-
cence. From 8 cultures, rhythmicity persisted in vitro in 8 supra-
chiasmatic and 5 cerebellar samples. While phase of circadian
oscillations in the suprachiasmatic slices was unaffected by tem-
porally restricted feeding (AL, peak at ZT8.1 * 0.4 h vs RF,
Z17.6 = 0.7 h, p = 0.4; Fig. 3C, E, G), the circadian timing in the
cerebellum was advanced in response to daytime restricted feed-
ing, highlighting the sensitivity of the cerebellar clockwork to
feeding and metabolic cues (AL, peak at ZT14.0 = 1.1 h vs RF,
ZT6.9 = 0.7 h, p < 0.001; Fig. 3D, F,G). The endogenous period
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feeding conditions for a given structure). H, Endogenous periods of Per 7:luciferase expression in
the SCN and cerebellum of mice asin G (ZT12 = lights off).

of Perl:luciferase bioluminescence was not significantly different
according to brain regions and feeding conditions (Fig. 3H ). This
second set of data demonstrates that the cerebellum contains a
circadian oscillator able to sustain several oscillations when iso-
lated in vitro and reset by timed feeding cues.

Intraventricular injections of OX7-saporin

Next, we investigated behavioral anticipation of mealtime in
mice with a global impairment in cerebellar cortical function
during adulthood. For that purpose, adult mice were injected in
the lateral ventricle with OX7-saporin. Consistent with previous
findings in rats (Mattsson et al., 2004; Nolan and Freeman, 2006),
this immunotoxin in mice depleted Purkinje cells in a dose-
dependent manner, as assessed with calbindin D-28K immuno-
staining ( p < 0.05; Fig. 4A). According to previous results in rats
treated with intracerebroventricular OX7-saporin, visual inspec-
tion of mouse brain sections stained with cresyl violet suggests
that deep cerebellar nuclei were spared by the immunotoxic le-
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sion (data not shown). Inferior olive in rats can be more or less
damaged by intracerebroventricular OX7-saporin and cerebellar
cortical lesions (Nolan and Freeman, 2006). In our mice treated
with OX7-saporin, it cannot be fully excluded that cellular loss
occurred in the inferior olive. Purkinje cell loss did not impair the
daily amount and pattern of wheel-running activity in mice fed
ad libitum ( p = 0.6; Fig. 4B). When challenged with restricted
feeding under light-dark cycle, mice that were given OX7-saporin
showed nocturnal activity close or slightly increased compared
with vehicle controls, again excluding ataxia as a side-effect in the
results. In sharp contrast, food-anticipatory activity was signifi-
cantly attenuated by OX7-saporin in all treated groups, albeit
without dose-dependent differences, compared with the control
group ( p < 0.05; Fig. 4B, C). Furthermore, during a fasting test
following the 2 week period of restricted feeding, all mice ex-
pressed a bout of locomotor activity before the expected meal-
time, albeit at lower levels for OX7-saporin-treated mice
compared with vehicle controls. This third set of data therefore
highlights the involvement of Purkinje cells in the neural mech-
anisms of food entrainment.

Cerebellar mutant (hotfoot) mice

Finally, we studied food-anticipatory variables in mutant mice
with impaired cerebellar circuitry that leads only to mild ataxic
phenotype, thus avoiding putative confounding effects on food-
anticipatory behavior. The Nancy hotfoot (ho) mutation causes
deletion of the coding sequence of the ionotropic glutamate re-
ceptor 62 gene (Grid2) which is selectively expressed in Purkinje
cells (Kashiwabuchi et al., 1995; Lalouette et al., 1998). Grid2,
identified by molecular cloning, does not bind to glutamate or to
any known ligand (Lalouette et al., 1998). Interestingly, the ho
mutation results in dendritic abnormalities of Purkinje cells that
are detectable with electron microscopy (Guastavino et al., 1990;
Kashiwabuchi et al., 1995) while global anatomical organization
remains apparently normal in Grid2"”"** mice (Fig. 2D-F). Im-
paired intracerebellar circuitry is thought to be responsible for
the mild deficiency in motor coordination of Grid2"™ mice,
similar to that observed in knock-out Grid2 mice (Kashiwabuchi
et al., 1995) while the motor phenotype of Grid2"”" individuals
appears essentially unaffected (Lalonde et al., 2003). The daily
patterns of wheel-running activity, locomotor activity and body
temperature in Grid2"”" mice fed ad libitum were very close to
those of wild-type mice, with the exception of a small peak
present at dawn in wild-type individuals and absent in mutants
(Fig. 5A,B).

Concerning body temperature during restricted feeding un-
der light-dark cycle, its values in wild-type mice before food ac-
cess started from a lower level (—3 h) but reached significantly
larger levels (—1 h) than those in Grid2"" and Grid2"™ mice
that did not differ much in that respect (Fig. 5A, B). During and
after feeding time, values of core temperature were essentially
similar in the three genotypes, indicating comparable thermoreg-
ulatory processes (Fig. 5A,B). Furthermore, a robust food-
anticipation activity was expressed before afternoon food access
in wild-type mice. Interestingly, these anticipatory components
were reduced in Grid2"”" mice and almost abolished in
Grid2"" mice challenged with restricted feeding under light-
dark cycle ( p < 0.05; Fig. 5A, B). Conversely, levels of locomotor
activity in Grid2"”* and Grid2"*"" mice were higher at early
night than those in wild-type mice, indicating the reduction or
lack of meal anticipation cannot be ascribed to ataxia. Thus, con-
trary to the mild ataxia observed in Grid2"" mice, but not in
Grid2"* individuals that are considered to be phenotypically
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Figure4. A, Number of Calbindin D-28K-immunoreactive (-ir) cells in the cerebellar cortex of mice treated with 0X-7 saporin. Values are expressed as the number of immunoreactive nuclei per
section (6 per animal) in the cerebellar vermis of mice. Scale bar, 100 wm. B, Wheel-running actograms of 0X-7 saporin and vehicle control mice under restricted feeding schedules (gray shaded
bars). F, fasting day. C, Left, Profiles of wheel-running activity of 0X-7 saporin (n = 4 per dose) and vehicle control mice (n = 6) during food restriction (gray shaded area indicates period of food
access). Middle, Group means of the activity percentage of mice from 3 h to 1 h before mealtime. Means lacking common letters are significantly different ( p << 0.05). Right, Group means of the
activity percentage of mice during the fasting from 3 h to 1 h before the expected mealtime. *Treated groups are significantly different from the control group ( p << 0.05).

identical to wild-type mice (Lalonde et al., 2003), there was a
gene-dosage effect in the expression of behavioral anticipation of
mealtime which was reduced and absent in Grid2"”" and
Grid2"" mice, respectively. Of note, daily food intake and body
mass during restricted feeding did not differ according to the
genotype (supplemental Table S1, available at www.jneurosci.org
as supplemental material, available at www.jneurosci.org as sup-
plemental material). The initial phase of locomotor activity after
transfer to constant darkness was phase-advanced by 1.3 * 0.3,
0.8 + 0.3, and 0.8 * 0.2 h in wild-type, Grid2"* and Grid2""
mice, respectively ( p > 0.05). Moreover, the free-running period
did not differ between genotypes (Fig. 5A).

Next, to make sure the diminished anticipatory activity in
Grid2""* mice was not due to a masking effect of light that would
inhibit locomotor activity during the light period, we exposed
Grid2"”"* mice and wild-type littermates to a restricted feeding in
constant darkness. Wild-type mice expressed food-anticipatory
bouts of general activity, wheel-running activity and body tem-

perature during the 3 h preceding the daily food access. These
food-anticipatory bouts were hardly detectable in Grid2""* mice
(p < 0.05; Fig. 6A,B). Note that in contrast to wild-type litter-
mates, Grid2"”"* mice showed increased general activity during
the period of food access. Diet-induced thermogenesis resulting
from food intake was similar in the two genotypes (Fig. 6 A, B).

When food was available ad libitum, day—night variations of
Perl, Per2, Rev-erba, and Dbp mRNA levels in the cerebellum
were very close between wild-type and Grid2"”" mice, excepted
that Per] expression was upregulated in Grid2"”" individuals
(Fig. 7A). Importantly, the increase of clock gene mRNA levels in
the cerebellum of wild-type mice during meal anticipation under
LD was absent in the cerebellum of Grid2""** mice, suggesting
that the circadian responses to mealtime at the molecular level are
also altered in Grid2"”"* mice (Fig. 7B).

Under ad libitum food conditions, day—night variations of
Perl expression in hypothalamic regions (i.e., the suprachias-
matic, dorsomedial nuclei and the arcuate nuclei) were present
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and in phase in both wild-type and A
Grid2"" mice, with higher levels of Perl
mRNA in the arcuate nuclei of Grid2""
individuals (Fig. 8). In sharp contrast to
the findings in the cerebellum of the same
animals, Per] expression in hypothalamic
regions sensitive to mealtime, such as the
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Body temperature

arcuate and dorsomedial nuclei, was sim-

ilarly increased before food access in both
wild-type and Grid2"** mice (Fig. 8).
Furthermore, the day-night pattern of
Per] expression in the suprachiasmatic
nuclei was affected by restricted feeding

neither in wild-type, nor in Grid2""

mice (Fig. 8). Overall changes of Per2
mRNA levels in the hypothalamic regions
according to genotypes and feeding con-
ditions were comparable to those de-
scribed above for Perl expression
(supplemental Fig. S3, available at www.

Grid2horho

jneurosci.org as supplemental material).
Finally, day—night variations in plasma
corticosterone, glucose, free fatty acids B
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?ood anl?[icipation. Figure 5. Lack of food-anticipatory activity and temperature in cerebellar mutant (Grid2") mice under a light-dark cycle.

A, Wheel-running activity (left), general activity (middle) and body temperature (right) rhythms of wild-type, Grid2"* and
Grid2" mice. Each line represents 48 h, plotted in 5 min bins. Gray shaded bars indicate time and number of days of food

Discussion

The ability of the cerebellum to express
near 24 h rhythms in vitro demonstrates
that it contains a functional circadian os-
cillator, thus indicating the presence of a
new component of the circadian timing
system. Phase-shifting effects of restricted
feeding on clock gene expression were
found both ex vivo and in vitro, revealing
that the cerebellar oscillator can be entrained to mealtime. Fur-
thermore, the behavioral and physiological data strongly suggest
that the cerebellar network plays a role in meal anticipation
because mice with genetic cerebellar deficits (Grid2"™) show no
sizeable expression of behavioral, physiological and molecular
food-anticipatory variables, while depletion of Purkinje cells in
the cerebellar cortex with OX7-saporin markedly reduced behav-
ioral anticipation of mealtime.

availability under LD conditions. After 20 d of food restriction, food was available ad /ibitum and animals were released in DD.
B, Top, Profiles of wheel-running activity (left), general activity (middle) and body temperature (right) rhythms in wild-type,
Grid2""* and Grid2""" mice under baseline conditions with food ad fibitum. Middle, Profiles of wheel-running activity (left),
general activity (middle) and body temperature profiles (right) of mice under restricted feeding schedules (gray shaded area; food
available during 6 h from midday to lights off). Bottom, Food-anticipatory components (percentage of daily values) of wheel-
running activity (left), general activity (middle), and body temperature (right) in food-restricted wild-type, Grid2"’* and
Grid2"" mice from 3 h to 1h before mealtime. Food was available during 6 h from midday to lights off. Means lacking common
letters are significantly different ( p << 0.05).

Clock gene expression in the cerebellum is shifted by

daytime feeding

The daily rhythmic expression of Perl in the mouse cerebel-
lum with a peak in early nighttime confirms previous descrip-
tions in that structure (Akiyama et al., 1999; Farnell et al,,
2008). Furthermore, these ex vivo gene expression data match
the rhythmic pattern of PerI-luciferase bioluminescence in the
rat cerebellum that peaks at projected ZT14 when measured in
vitro. Our analysis of clock gene expression in the mouse cere-
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Food anticipation is attenuated or
lacking in mice with cerebellar damage
To establish a role of the cerebellar oscil-
lator in meal anticipation, Purkinje cells
in the cerebellar cortex were damaged
with OX7-saporin. This immunotoxic le-
sion that damages the cerebellar cortex
and spares cerebellar deep nuclei (Nolan
and Freeman, 2006) markedly reduced
food-anticipatory activity.

The line of cerebellar mutants we
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Hours before mealtime Hours before mealtime Hours before mealtime was similarly phased as in wild-type mice
. B B ] oo challenged with restricted feeding in ac-
Figure 6. Lack of food-anticipatory activity and body temperature in cerebellar mutant (Grid2"”"°) mice under constant

darkness. 4, Wheel-running (left), general activity (middle), and body temperature (right) rhythms of wild-type and Grid2"
mice exposed to restricted feeding in DD conditions. Gray shaded bars indicate time and number of days of food availability. B, Top,
Profiles of wheel-running activity, general activity, and body temperature in wild-type (n = 8) and Grid2"" mice (n = 7)
averaged in 1hbins over the 24 h cycle. Gray shaded area indicates daily 6 h access to food. Bottom, Food-anticipatory components
(percentage of daily values) of wheel-running activity (left), general activity (middle) and body temperature (right) in food-
mice from 3 h to 1h before mealtime. *p << 0.05 between genotypes for a given time point.

restricted wild-type and Grid2"*"°

bellum reveals phase-relationships of cycling expression of Perl,
Per2, Rev-erba, and Dbp consistent to those known in the molec-
ular clockwork (e.g., in the liver; see Feillet et al., 2006). Day—
night expression of Bmall in the cerebellum of mice fed ad
libitum is high and low at midday and midnight, respectively (C.
Graff and E. Challet, unpublished data), as already observed
(Namihira et al., 1999) and in accordance with its role as a tran-
scriptional activator of Rev-erba and Per genes. The daily expres-
sion of PER2 was delayed by ~5 h compared with the cycling of
Per2, in keeping with the 4—6 h lag found in the suprachiasmatic
nuclei (Field et al., 2000; Mendoza et al., 2007). Moreover, im-
munohistochemical staining indicates that the cerebellar oscilla-
tor likely resides in the Purkinje cells.

Daytime restricted feeding or hypocaloric feeding under a
light-dark cycle changes the phase of clock genes and proteins
oscillations in the cerebellar cortex. The phase advance for Per
oscillations was larger than that for Rev-erba (8 h versus 3 h,
respectively). Furthermore, day—night variations of Bmall in the
cerebellum were inverted by daytime feeding (Graff and Challet,
unpublished data). Therefore, the cerebellar clockwork is clearly
sensitive to, and phase-adjusted by, feeding cues. Comparable
phase-resetting effects of timed feeding on circadian oscillations of
clock genes/proteins have been previously observed in a number of,
but not in all, forebrain regions outside the suprachiasmatic nu-
clei (Wakamatsu et al.,, 2001; Mieda et al,, 2006; Angeles-
Castellanos et al., 2007; Verwey et al., 2007; Feillet et al., 2008).

cordance with previous studies in the
same hypothalamic regions (Mieda et al.,
2006; Moryia et al., 2009). This finding
suggests that the feeding-associated circa-
dian system relies on a widely distributed
network including the cerebellum and
controlling food-anticipatory processes,
and that several (hypothalamic) compo-
nents can be shifted by feeding cues independently.

The cerebellar oscillator belongs to the feeding-associated
circadian network
Even if the cerebellum is largely acknowledged as a motor coor-
dinator, it also modulates motor and spatial learning and partic-
ipates in temporal discrimination (see Introduction). A few
works have also implicated the cerebellum in the regulation of
feeding (Mahler et al., 1993; Zhu and Wang, 2008). Interestingly,
regional cerebral blood flow, used as a marker of neuronal acti-
vation, is selectively increased in the cerebellum of hungry pa-
tients, suggesting that metabolic signals associated with hunger
reach this brain region (Tataranni et al., 1999). Neuropeptide Y is
apotent orexigenic neuropeptide that is expressed not only in the
arcuate nucleus of the hypothalamus, but also in the nucleus of
the solitary tract and the cerebellum (Ishizaki et al., 2003). In that
study, the autoradiograms strongly suggest that the transcription
of neuropeptide Y gene in the cerebellar cortex is highly activated
by both restricted feeding and food deprivation. The present data
further indicate that the cerebellar cortex is involved in anticipa-
tion of mealtime, a process thought to combine circadian time
measurement and resetting by feeding cues (Mistlberger, 1994).
The neural mechanisms of food anticipation are not well
understood yet. Until now, the lesion strategy that has been suc-
cessful to identify the light-entrainable clock within the suprachi-
asmatic nuclei failed to identify well circumscribed cerebral
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off). Animals were killed at ZT6 (i.e., just before mealtime) and 12 h later (ZT18).

time point (ZT12 = lights off).

regions specifically involved in meal antici-
pation, that is, brain regions whose destruc-
tion fully eliminates food-anticipatory
processes. As mentioned in the Introduc-
tion, however, food-anticipatory compo-
nents can be reduced after lesions of the
parabrachial nucleus (Davidson et al.,
2000), the core of the accumbens nucleus
(Mendoza et al., 2005b) and possibly the
dorsomedial hypothalamus (Gooley et al.,
2006). The role of this hypothalamic region
in food anticipation, however, remains
highly controversial (Landry et al., 2006;
Mistlberger et al., 2009; Moriya et al., 2009).
This relative paucity of positive findings de-
spite extensive research has led to the hy-
pothesis that the food-entrainable oscillator
may actually not be localized in a particular
brain region but instead, may involve a dis-
tributed cerebral network resulting from
interactions of a set of brain regions di-
rectly sensitive or not to metabolic cues

~p << 0.05 between time points; p < 0.05 genotype X time interaction; *p < 0.05 between genotypes for a given

- 30 8 8
3 DMH . ARC m. WT
3 == Grid2""
>
AL 2 s 4 # 4
g ~ ~
(4
3
5
& 9 0 0
zT18 zZT-6 ZT-18 zZT-6 zT418
-~ 10 8 8
3 SCN DMH ARC == WT
g == Grid2rm
>
RF ¢ 4 4
-4
4 ~ ~
; I Ta JD_[L JD_iL
5
& 0 0 0
zZT16 zT18 zZT6 zT18 zZT-6 zT18
[meattime]
Figure 8.  Day—night variations of expression of Per7 clock gene in the suprachiasmatic (SCN), dorsomedial hypothalamic

(DMH), and arcuate nuclei (ARC) from wild-type and Grid2"""° mice either fed ad libitum (AL; top) or exposed to restricted feeding
[(RF) food available during 6 h from midday to lights off, bottom]. Animals were killed at ZT6 (i.e., just before mealtime in
food-restricted mice) and 12 h later (ZT18). ~p << 0.05 between time points; *p < 0.05 between genatypes; *p < 0.05 between
genotypes for a given time point (ZT12 = lights off).

is either one of the links within the feeding-associated circadian

coming from peripheral organs (Mistlberger, 1994; Stephan,
2001; Mendoza, 2007). In accordance with previous observations
of functional changes in the cerebellum during food anticipation
(de Vasconcelos et al., 2006), the present data clearly indicate for
the first time that the cerebellar oscillator can integrate temporal
cues associated with feeding time. In that respect, the cerebellum

network or a critical region for mealtime processing.

Afferent pathways conveying nutritional cues to the
cerebellar oscillator

One possibility for the cerebellar clockwork to be reset by feeding
cues is that blood-borne signals penetrate into the CNS via cir-
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cumventricular organs devoid of the blood—brain barrier before
reaching cerebellar targets. For instance, the cerebellum expresses
a high density of leptin receptors (Guan et al., 1997) whose ex-
pression is clearly downregulated by high-fat feeding (Koros et
al., 2009), suggesting that peripheral leptin could well transmit
metabolic signals to that structure. Another example is the ex-
pression of glucose transporters (Glut), including the insulin-
responsive Glut4, in the cerebellum (El Messari et al., 1998;
Choeiri et al., 2002), suggesting that glucose and/or insulin could
provide afferent signals to that brain region.

Alternatively, the cerebellum can receive indirect feeding cues
via identified neural routes after integration of blood-borne sig-
nals by the brainstem (nucleus of the solitary tract/parabrachial
nucleus) or mediobasal hypothalamus (arcuate nucleus, ventro-
medial hypothamic nucleus; see Zhu and Wang, 2008). Because
changes of Per] expression in the arcuate and dorsomedial hypo-
thalamic nuclei were similar in food-restricted wild-type mice
and Grid2""* mice, respectively, expressing or not food-anti-
cipatory activity, this finding suggests that the mediobasal hypo-
thalamus is not critical for cerebellar synchronization to feeding.
In addition another route exists, identified by extracellular re-
cording in the deep cerebellar nuclei after gastric vagal stimula-
tion, which conveys peripheral signals to the cerebellar network
via the vagus nerve (Li et al., 2009). These data indicate that the
cerebellum can either directly sense metabolic signals or receive
them indirectly via multiple neural projections.

The parabrachial nucleus and locus ceruleus may play a role in
conveying nutritional cues to the feeding-associated circadian
network (Davidson et al., 2000; Warnecke et al., 2005). Connec-
tions to the cerebellum coming from the parabrachial nucleus
and locus ceruleus have already been characterized (Dietrichs,
1985). Furthermore, the hodological studies described above
make possible that neuronal projections could also transmit feed-
ing cues from sensitive areas in the ventromedial hypothalamus
to the cerebellum. As evoked earlier, the cerebellum could di-
rectly detect some blood-borne nutritional signals. Once pro-
cessed by the cerebellar cortex, temporal messages associated
with feeding/metabolic cues would then be transferred via iden-
tified neural pathways (Cavdar et al., 2001; Zhu et al., 2006) to
relay structures controlling the outputs, including hypothalamic,
thalamic and cortical areas for the control of food-anticipatory
activity and temperature.

Future research will be necessary to identify the nature of
nutritional cues (i.e., hormones or metabolites) and the mecha-
nisms by which they might reset the cerebellar clockwork.
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