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The orbitofrontal cortex (OFC) has been implicated in decision-making under uncertainty, but it is unknown how information about the
probability or uncertainty of future reward is coded by single orbitofrontal neurons and ensembles. We recorded neuronal ensembles in
rat OFC during an olfactory discrimination task in which different odor stimuli predicted different reward probabilities. Single-unit firing
patterns correlated to the expected reward probability primarily within an immobile waiting period before reward delivery but also when
the rat executed movements toward the reward site. During these pre-reward periods, a subset of OFC neurons was sensitive to differences
in probability but only very rarely discriminated on the basis of reward uncertainty. In the reward period, neurons responded during
presentation or omission of reward or during both types of outcome. At the population level, neurons were characterized by a wide
divergence in firing-rate variability attributable to expected probability. A population analysis using template matching as reconstruc-
tion method indicated that OFC generates a distributed representation of reward probability with a weak dependence on neuronal group
size. The analysis furthermore confirmed that predictive information coded by OFC populations was quantitatively related to reward
probability, but not to uncertainty.

Introduction
One of the key factors in decision-making is the probability of
future rewards resulting from voluntary actions. Behavioral stud-
ies in humans have shown that a certain reward is generally pre-
ferred over an uncertain or probabilistic reward of the same
amount: in a process called probability (or odds) discounting, the
value of probabilistic rewards is degraded as the reinforcer be-
comes less probable (Rachlin et al., 1991). The choice between
small, likely rewards and large, unlikely rewards has been found
to activate the orbitofrontal cortex (OFC) (Rogers et al., 1999;
Ernst et al., 2004), an area of the prefrontal cortex that has been
strongly implicated in the assessment of reward value (O’Doherty
et al., 2001, 2003) and in the planning of actions leading to im-
mediate rewards (Tanaka et al., 2004). Additional support for an
involvement of the OFC in risky decision-making comes from
studies with humans suffering orbitofrontal damage. These pa-
tients perform poorly on tasks involving uncertainty, such as the
Iowa gambling task, by continuing to choose high-risk decks of

cards, whereas normal subjects bias their choice behavior toward
low-risk decks (Bechara et al., 1996, 1997). Furthermore, recent
brain imaging studies suggest a positive correlation between or-
bitofrontal activity and the unpredictability of reward (Hsu et al.,
2005). Thus far, rodent studies have produced somewhat con-
flicting results on the precise role of OFC in risky decision-
making. Using a probability discounting paradigm, Mobini et al.
(2002) demonstrated that orbitofrontal-lesioned rats preferred
the smaller, more probable reinforcer over the larger, but infre-
quent reward. In contrast, Pais-Vieira et al. (2007), using an al-
ternative probability discounting paradigm more similar to the
gambling tasks used in humans, showed that animals with orbito-
frontal lesions preferred the larger but less probable reward,
which is in accordance with stronger risk-taking behavior as
demonstrated by data from patients with prefrontal lesions. The
contrasting results of these two rodent studies are likely caused by
differences in experimental design and methods, but altogether,
these animal studies and the human imaging data do suggest that
the OFC is involved in assessing the value of rewards on the basis
of their probability.

Despite this body of evidence, it is still unknown whether and
how value based on reward probability is coded in OFC and
whether coding based on probability is distinguishable from cod-
ing based on uncertainty. Studying this specific topic may also
shed light on the more general question how neuronal popula-
tions represent the probability of any behaviorally relevant vari-
able, be it sensory, motor, or motivational (Knill and Pouget,
2004; Daw et al., 2005). To examine how the firing activity of
orbitofrontal neurons is affected by a varying future reward prob-
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ability, we trained rats on an olfactory discrimination task in
which odors were predictive of the probability of a pellet reward.
During this task, we examined both single-unit and population
activity and expected neural activity predictive of future reward
probability to be found in multiple task periods (Schoenbaum et
al., 1998; van Duuren et al., 2007).

Materials and Methods
Subjects
All experiments were approved by the Animal Experimentation Com-
mittee of the Royal Netherlands Academy of Arts and Sciences and were
performed in accordance with the National Guidelines for Animal Ex-
perimentation. Data were collected from four male Wistar rats (Harlan),
weighing 375– 425 g at the time of surgery. Animals were socially housed
in standard type 4 Makrolon cages, weighed and handled daily, and kept
under a reversed 12 h light/dark cycle (dimmed red light at 7:00 A.M.).
Animals were maintained on 90% of their free-feeding body weight (16 g
of standard rat food chow per day per rat), with water available ad libi-
tum. After surgery, the animals were housed individually in a larger cage
(1 � 1 � 1 m) under the same conditions.

Behavior
Apparatus. The recording chamber (40 � 37 � 41.5 cm), placed in a
sound-attenuated and electrically shielded box, had a black interior with
straight walls. The front panel contained on the right side a light signaling
trial onset and an odor sampling port, and the left side had a food trough.
Behavioral events and data collection were controlled and registered by a
computer. Both sampling port and food trough contained an infrared
beam transmitter and detector port inside to detect the responses made
by the animals. Odor delivery was controlled by a system of solenoid
valves and flow meters (van Duuren et al., 2007) with separate delivery
lines for each odor to prevent mixture of odors in the system. Two pellet
dispensers were present (ENV-203 Magazine Type, 45 mg; MED Associ-
ates): one for pellet delivery (45 mg sucrose pellets; Bioserve Biotechnol-
ogy) and one empty dispenser used to mimic the sound of the dispenser
during unrewarded trials. The odorants (Tokos BV) were separated into
different families, i.e., fruity, floral, herbal, woody, and citrus. For each
discrimination session, four distinct odors were used, each odor from a
different family. Furthermore, no single family of odors was preferen-
tially associated with a particular trial outcome.

Behavioral paradigm. After habituation, animals were progressively
trained on the behavioral procedure of the four-odor probability task.
Four new odors were used in each discrimination session, each odor
associated with a specific reward probability, i.e., p � 100%, p � 75%,
p � 50%, and p � 0%. Initially, p � 25% was inserted in the task
paradigm as well, but we removed this reward condition because animals
were less willing to perform the task, which was probably caused by the
lower availability of rewarded trials. Animals were first trained to make a
nose poke in the odor sampling port, which was sufficient to immediately
obtain reinforcement by visiting the food trough. In the next phase,
animals learned to make an odor poke with a minimal duration of 1.5 s.
In the final stage of shaping, a waiting period of 1.5 s was introduced
during the poke in the food trough and before the pellet was delivered.

Once animals were familiar with the behavioral procedure of the task,
two different four-odor discrimination problems were consecutively
presented to the animal to provide additional training. After rats learned
new odor–reward probability associations (as visible by withholding re-
sponses toward or at the food trough after sampling the odor predictive
for the null probability), they were implanted with a head stage contain-
ing an array with individually movable tetrodes (“hyperdrive”), and re-
cordings started. During each recording session, a new set of four odors
was presented, which were chosen pseudorandomly. During the task,
trial onset was indicated by the trial light switching on, after which the
animal had 15 s to make an odor poke. If no odor poke was made, the trial
light turned off, and the intertrial interval (ITI) (with a variable duration
of 10 –25 s) started. Whenever a prolonged odor poke was made, the trial
light switched off after 0.25 s, followed 0.25 s later by the presentation of
an odor. This period was included to prevent the animal from moving

during cue sampling. Odor sampling itself was required to last at least 1 s.
After retraction of the animal’s nose out of the odor sampling port or
whenever a maximal duration for odor sampling (10 s) was exceeded,
odor presentation was terminated. Premature retraction from the odor
sampling port (odor pokes shorter than the minimal duration of 1.5 s)
resulted in the start of the intertrial interval. After the waiting period in
the food trough of 1.5 s, a pellet was delivered during the reward trials,
and, 5 s later, the intertrial interval started. The behavioral sequence
comprising the departure from the sampling port to the food trough,
including nose entry and waiting period in the food trough, will be re-
ferred to as the “go” response.

Surgery and electrophysiology
Animals were anesthetized with 0.08 ml/100 g Hypnorm intramuscularly
(0.2 mg/ml fentanyl and 10 mg/ml fluanison) and 0.04 ml/100 g Dormi-
cum subcutaneously (midazolam 1 mg/kg) and mounted in a David
Kopf Instruments stereotaxic frame. After exposure of the cranium, five
small holes were drilled to accommodate surgical screws, one of which
served as ground. Another hole was drilled over the OFC in the left
hemisphere (center of the hole was 3.6 mm anterior, 3.2 mm lateral to
bregma according to Paxinos and Watson, 2005). The dura was opened,
and the exit bundle of the hyperdrive was lowered onto the exposed
cortex, after which the hole was filled with a silicone elastomer (Kwik-Sil;
World Precision Instruments), and the hyperdrive was anchored to the
screws with dental cement. The hyperdrive, which was custom built,
contained an array of 12 individually drivable tetrodes and two reference
electrodes (13 �m nichrome wire; Kanthal), spaced apart by at least 310
�m (Gray et al., 1995; Gothard et al., 1996). Immediately after surgery, all
tetrodes and reference electrodes were advanced 1 mm into the brain; in
the course of the next 3 d, the tetrodes were gradually lowered until the
OFC was reached. Animals were allowed to recover at least 7 d before the
start of the recordings. To record different units during each recording
session, all tetrodes were lowered at the start of a recording day with
increments of 40 �m. Once the tetrodes were lowered, the animal was left
to rest in his home cage for at least 2 h in view of unit recording stability,
after which the experimental session started.

Electrophysiological recordings were performed using a Cheetah re-
cording system (Neuralynx). Signals from the individual leads of the
tetrodes were passed through a low-noise unity-gain field-effect transis-
tor preamplifier, insulated multiwire cables, and a 72 channel commu-
tator (Dragonfly) to digitally programmable amplifiers (gain, 5000 times;
bandpass filtering, 0.6 – 6.0 kHz). Amplifier output was digitized at 32
kHz and stored on a Windows NT station. The occurrence of task events
in the behavioral chamber was recorded simultaneously.

After finishing experiments with a given rat, tetrode positions were
marked by passing a 10 s, 25 �A current through one of the leads of
each tetrode. Animals were perfused transcardially �24 h after the
lesions were made, using a 0.9% saline solution followed by 10%
Formalin. After removal from the skull, brains were stored in a 10%
Formalin solution for several days before sectioning. Brain sections of
40 �m were cut using a vibratome and were Nissl-stained to recon-
struct the tracks and final positions of the tetrodes. This showed that
recording sites ranged from 2.7 to 4.7 mm anterior to bregma and
were limited to the ventral and lateral orbital regions of the
OFC. Recording depth ranged from approximately �3 to �5.5 mm
(Paxinos and Watson, 2005) (Fig. 1).

Data analysis
Behavior. Behavioral data was analyzed using SPSS for Windows (version
11.0). Unless otherwise stated, results are expressed as mean � SEM
values. “Movement time” was defined as the interval between nose re-
traction from the odor port and nose entry into the food trough, whereas
the “overall response time” was defined as the duration of the behavioral
sequence starting with odor sampling and ending with the nose poke in
the food trough. The mean response times per reward probability were
obtained from all trial types associated with a particular probability from
all sessions. These measures were compared across different trial types
with the nonparametric Kruskal–Wallis test ( p � 0.05), followed by a
post hoc Mann–Whitney U test ( p � 0.05).
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Single units. Single units were isolated and analyzed as described pre-
viously by van Duuren et al. (2007). In short, spike sorting was done
offline using standard cluster cutting procedures (BBClust/MClust 3.0).
Perievent time histograms were constructed to examine correlations be-
tween events in the task and changes in firing rate. Neural responses
during trials were statistically assessed with the nonparametric Wilcoxon’s
matched-pairs signed-rank (WMPSR) test ( p � 0.01). These task-
related neural correlates were considered significant if firing rates during
trials, quantified per bin, were significantly different from a fixed control
(baseline) period during the intertrial interval. This control period con-
sisted of five consecutive bins, and any of the bins in the trial period tested
for a significant change in firing was required to differ significantly from
each of these five control bins. In addition, responses had to be significant
for two bin sizes to be considered as such. These bin sizes were 100 and
1500 ms for all task periods, except for the movement period, for which
100 and 700 ms were adopted (700 ms corresponded to the approximate
mean duration of this period). The use of a nonparametric test avoids the
assumption of normally distributed spike counts inherent to parametric
tests (cf. van Duuren et al., 2007). Once the WMPSR test indicated a
significant deviation in firing rate with respect to baseline, the nonpara-
metric Kruskal–Wallis test ( p � 0.05) and a post hoc Mann–Whitney U
test ( p � 0.05) were used to compare the different PETHs pertaining to
trial types with different reward probabilities.

Given the proportion of cells that not only shows a significant firing
response during trials but also a modulation by reward probability
(determined at p � 0.05), we used the following method to assess
whether this proportion of the total number of task-related cells
tested (n � 78) (see Results) is attributable to chance or not. When
determining what the probability is that the true proportion (�) of
modulated neurons is actually 5% or smaller, given a proportion P
found in the sample, the confidence interval for proportions is deter-
mined by the following:

� � P � Z�P�1 � P�

n
(1)

where Z is the Z-score, and n is the size of the sample tested (Sokal and
Rohlf, 1995).

Variability in the population code for reward
probability. To examine the variability in re-
sponses within the population toward reward
probability in more detail, we calculated two
different measures of response variability.
These measures have been used previously to
indicate sparseness of neural coding (Rolls and
Tovee, 1995; Perez-Orive et al., 2002). Param-
eter variability (Vpar), which is indicative of the
response variability of a single cell attributable
to differences in reward probability, was calcu-
lated as follows:

Vpar �
N

N � 1

r2� � �r��2

r2�
, (2)

with

r� �
1

N �
j�1

N

rj

and

r2� �
1

N �
j�1

N

rj
2

where N indicates the total number of reward
probabilities (N � 3, namely 50, 75, or 100%;
the p � 0% condition was not part of this anal-
ysis because of the lower amount of trials, but
see below), and rj is the mean firing rate per cell

per probability. Vpar assumes a value of 1 when the cell under scrutiny
fires selectively for only one reward probability and does not fire at all for
the other two conditions, whereas Vpar � 0 when spike counts are equal
for all three reward probabilities. In addition, we calculated the popula-
tion variability (Vpop), which is indicative of the variability in the mean
firing rate of single cells across the population, regardless of the proba-
bility of reward. This measure was calculated in a similar manner, but rj

now indicates the mean firing rate of neuron j during a particular trial
phase, averaged across all three reward probabilities, and N is the number
of units recorded in a given session. Thus, r� now represents the mean

firing rate in the population and r2� is the mean squared firing rate. Values
ranged between 0 and 1, with 1 representing the maximal variability
attainable.

Ensemble analysis of reward probability coding. Representation of ex-
pected reward probability by ensemble activity was examined using tem-
plate matching as reconstruction method. For an extensive explanation
of this method, see van Duuren et al. (2008). Briefly, the aim of this
analysis was to reconstruct or decode the probability of reward from
spike trains recorded from an ensemble of OFC neurons, because usually
multiple spike trains provide more information about an encoded vari-
able than a spike train generated by a single neuron. In this procedure, the
series of firing-rate values of all cells of the ensemble are conceptualized
as a population vector for each reward probability, containing the spike
counts of each cell within a specified trial phase (e.g., the waiting period).
From each session, two population vectors were created, denominated as
x � (x1, x2, . . . xN) and y � ( y1, y2, . . . yN), with xi and yi indicating the
spike count of cell i averaged across trials. One vector is used for the
encoding part of the procedure, which determines the “template,” i.e.,
the response profiles or “tuning curves” of the cells toward reward prob-
ability. These response profiles consist of a list of the spike counts of all
cells pertaining to the different reward conditions. The other vector is
used for the decoding part of the procedure, in which the spike counts,
specific for reward probabilities, are taken from the same cells but now
from the first part of the session. The decoding vector is then compared
with the encoding vector. Thus, these vectors are used to calculate the
decoding score, which is the percentage of correctly identified reward

Figure 1. Localization of tetrode recording sites. As indicated by rectangles, recordings in all rats were localized in the ventral
and lateral regions of the OFC, between 2.7 and 4.7 mm anterior from bregma. Recording depth ranged from approximately �3
to �5.5 mm (Paxinos and Watson, 2005). Several tetrode tracks are visible, as indicated by the black arrows. Black asterisks mark
the lesion sites showing the final position of three tetrodes.
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probabilities in the decoding phase, based on the activity patterns found
in the encoding phase. Hence, the ensemble code for reward probability
is made up of the different firing rates of all recorded cells combined in
the encoding and decoding phase in relation to reward probability. Note
that, besides mean firing rate per trial phase, other aspects of firing pat-
terns, such as related to spike timing, may in general make additional
contributions to ensemble coding (cf. Narayanan et al., 2005).

Template matching was used as described previously by Lehky and
Sejnowski (1990) and Zhang et al. (1998). The similarity (“matching”)
between the two vectors containing the spike count in the defined time
window for the encoding and decoding block was calculated by comput-
ing the cosine of the angle between them. A value of 1 represents an exact
similarity between the two vectors and �1 is the exact opposite, whereas
0 (i.e., orthogonal) indicates no similarity between the two vectors. First,
the inner product of x and y was calculated as follows:

�
i�1

N

xiyi (3)

where xi and yi indicate the average firing rate of neuron i from a total of
N cells within the specified time window for the encoding and decoding
block, respectively.

The cosine value was calculated as follows:

cos � �

�
i�1

N

xiyi

��x�� . ��y�� (4)

with the denominator representing the product of the absolute vector
lengths. Whenever the decoding spike vector belonging to a particular
reward probability provided the highest cosine value with respect to the
encoding vector, then that particular probability was selected as the re-
constructed likelihood.

For our standard analysis, the initial three-quarters of the trials within
a session was used for decoding, whereas the final one-quarter of the
trials was used for encoding. A standard time window was used for the
various trial phases for which reward probability was reconstructed, cor-
responding to the duration of that particular phase within the trial. The
decoding time frame used for the period in which the animal moved from
the odor sampling port to the food trough (the movement period) was
0.7 s, and the time frame for the waiting period at the food trough was
1.5 s. For the reward phase, the decoding time frame was 5 s, unless
otherwise noted.

The decoding score was expressed as a function of time and of the size
of the “reconstruction ensemble,” i.e., the group of neurons that was
subsampled from the entire population and used for the calculations.
The maximum size of the reconstruction ensemble was 27, which corre-
sponds to the lowest amount of cells recorded in the sessions used for this
analysis. Thus, all ensembles used for our population coding study con-
tained at least 27 units. Calculations were made for each recording ses-
sion separately, after which decoding scores were averaged across ses-
sions. For the assessment of decoding as a function of size of the
reconstruction ensemble, the decoding score was calculated 100 times for
each group size, each time with neurons randomly picked from the pop-
ulation recorded in that particular session. The decoding curves were
analyzed further by applying linear regression analysis ( p � 0.05) and a
one-way ANOVA test with, if appropriate, a Bonferroni’s correction
( p � 0.05). Besides template matching, we applied Bayesian reconstruc-
tion as a method to study population coding (Lehky and Sejnowski, 1990;
Zhang et al., 1998). The decoding performance obtained with this
method, however, was generally similar or slightly lower than for tem-
plate matching, and therefore these results will not be discussed here.

Results
Behavior
For the analysis, we used data from 19 recording sessions, ob-
tained from four rats. Animals performed on average 32 trials for

each of the three highest reward probabilities ( p � 100%, 32.2 �
2.2; p � 75%, 32.6 � 2.9; p � 50%, 32.3 � 2.1). For probability
p � 0%, animals performed significantly fewer trials compared
with the other three probabilities, on average 9.0 � 2.3 (paired
sampled t test, for all three comparisons, p � 0.001; note that each
odor–probability coupling was novel at the beginning of each
session). Movement time (the interval between nose retraction
from the odor port and nose entry into the food trough) showed
no significant difference between the probabilities p � 100, 75,
and 50% (respectively, 0.69 � 0.01, 0.68 � 0.01, and 0.72 �
0.01 s), but the movement time for each of these reward proba-
bilities was significantly shorter than for the null probability
(1.15 � 0.05 s). Furthermore, examination of the overall re-
sponse time (the duration of the behavioral sequence starting
with odor sampling and ending with the nose poke in the food
trough) revealed that animals responded significantly faster on
p � 100 and 75% trials compared with p � 50%; no significant
difference was found between p � 100% and p � 75% ( p �
100%, 2.43 � 0.03 s; p � 75%, 2.39 � 0.03 s; and p � 50%, 2.61 �
0.04 s). Thus, learning within this task was evident from the
shorter overall response time for the two highest reward proba-
bilities, as well as from the lower amount of trials and slow re-
sponding for the p � 0% reward condition. The result that no
differences in the movement time were observed except between
the p � 100, 75, and 50% conditions versus the 0% condition is
similar to the behavioral result from our recent study examining
coding of expected reward magnitude, also based on olfactory
cues (van Duuren et al., 2007). Also here, it was argued that
moving to the reward site to obtain reward is a relatively fast,
stereotyped behavior compared with sampling odors containing
predictive information.

Electrophysiology
Single units: modulation of firing rate by reward probability
During the 19 recording sessions, a total of 541 single units was
recorded in the OFC, with a firing rate of 1.30 � 0.07 spikes/s
(mean � SEM). Of these 541 units, 136 (25%) showed 184 sta-
tistically significant responses during the task, which implies that
a considerable proportion of cells exhibited more than one cor-
relate. Task-related firing-rate modulations were observed in
neurons that responded during sampling of odors (n � 38) (Fig.
2A), during the behavioral period in which animals moved from
the odor sampling port toward the food trough (n � 25) (Fig.
2B), during the waiting period at the reward site (n � 53) (Fig.
2C), and after pellet delivery (n � 69) (Fig. 2D) (cf. Schoenbaum
et al., 1998; Ramus and Eichenbaum, 2000). Notably, these firing-
rate modulations were transient in nature and primarily re-
stricted to one trial phase (except in cells with dual correlates).
For instance, no odor-response cells were found that continued
being active throughout the movement or waiting period, which
argues against a working memory-like maintenance of odor in-
formation throughout the trial.

Examination of coding of expected reward probability fo-
cused on the two task periods in which predictive information
was expected to be found, i.e., the movement and waiting period
(Schoenbaum et al., 1998; van Duuren et al., 2007). Given that the
mathematical concept of probability involves the very notion of
expectation, we will use the adjective “expected” here as referring
to the subjective state of the animal anticipating a trial outcome
based on the preceding odor cue. Reward-predictive coding may
also occur during odor sampling, but this task phase was not
analyzed here because odor identity could not be dissociated
from reward probability. During the waiting and movement pe-
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riods, a total number of 78 neurons demonstrated task-related
activations (movement period, n � 25, 32%; waiting period, n �
53, 68%). Modulation of this activity by the probability of reward
was found in 17 (22%) of these neurons. The proportion of
probability-modulated cells was higher for the waiting period
compared with the movement phase (waiting, 14 of 53 cells, 26%;
movement, 3 of 25 cells, 12%). To assess whether the proportion
of significantly probability-modulated neurons deviates from
chance level, we computed confidence intervals for proportions
(see Materials and Methods) and found that, given an overall
22% fraction on the total number of neurons subjected to testing
(n � 78), the probability that the true proportion of probability-
modulated neurons is actually 5% or smaller amounts to p �
1.10�4 (Z � 3.62).

Figure 3, A and B, illustrates the response profiles of these
neurons: activity was found to either increase or decrease with
decreasing probability, or neurons displayed a peak or valley in
firing rate at 75 or 50% probability. Thus, probability-related
firing-rate modulations of OFC neurons are not always expressed
as monotonic increments or decrements as a function of proba-
bility but may also reach peaks or troughs for intermediate values

of the tuning curve. All of these varieties of
tuning may support the information-
processing capacity of the OFC network
using probability prospects to guide be-
havior. The response patterns during the
movement phase could be identified as being
task-related because in none of the 25
movement-relatedcellsweretheyfoundwhen
the same type of behaviors was displayed dur-
ing the intertrial intervals (Fig. 3C).

Single units: firing-rate modulation by
reward probability versus uncertainty
Although reward probability and uncer-
tainty are considered fundamentally dif-
ferent outcome parameters (Fiorillo et al.,
2003; Dreher et al., 2006; Tobler et al.,
2007), they are intimately linked in the
sense that with the two extreme probabil-
ities ( p � 0 and 100%) uncertainty is
absent, whereas at intermediate probabil-
ities uncertainty increases, being maximal
in the p � 50% condition. Here, “proba-
bility” is defined as the numerical value
quantifying the chance that a specified
outcome of several possible outcomes will
occur as a consequence of a course of
events that is unpredictable to the animal.
In contrast, “uncertainty” refers to the
width of the probability distribution of
outcomes and can to a first degree be ex-
pressed as the variance of this distribu-
tion. Whereas the expected reward value
is considered a linear function of reward
probability, uncertainty follows an in-
verted U-shaped function of probability,
being minimal at p � 0 or 1 and maximal
at p � 0.5 (cf. Schultz et al. 2008). If single
OFC neurons predominantly code uncer-
tainty and not probability, more OFC
neurons will be found that discriminate in
their pre-reward mean firing rate between
trials with certain versus uncertain out-

comes than OFC neurons discriminating on the basis of proba-
bility value. Of the 78 cells showing task-related activation in
pre-reward periods, only one neuron significantly discriminated
on the basis of the certain versus uncertain contrast. (Namely, the
mean firing rate across a first pair of 100 and 0% trials was com-
puted and plotted against the mean rate for temporally proximal
trials with 50 and 75% probability, and so on for subsequent pairs
of temporally proximal trials. Next, a sign test was applied across
all plotted points, p � 0.05; one cell was found for movement
period.) When, however, the contrast based on probability value
was applied (namely 100 and 75% versus 0 and 50% reward prob-
ability), 17 significantly discriminating neurons were found (10
and 7 for the movement and waiting periods, respectively). The
ratios applying to these two contrasts (1 of 78 vs 17 of 78) were
significantly different at p � 3.10�4 (ratio test). In conclusion,
these results reveal that single OFC neurons preferentially dis-
criminate on the basis of probability value, not uncertainty.

Single units: activity after reward delivery
For the reward delivery period, neural activity was examined for
rewarded or unrewarded trials. During this period, 69 significant

Figure 2. Overview of behavioral correlates of neural activity changes observed during task performance. Perievent time
histograms and raster plots showing examples of the observed task-related behavioral correlates. Examples from four different
units recorded in four different sessions demonstrating correlates related to the following: A, odor sampling (synchronized on onset
of odor presentation during p � 100% trials); B, movement activity preceding nose entry into the food trough (synchronized on entry
of the food trough during p�50% trials); C, waiting period of 1.5 s with nose in the food trough, synchronized on onset of waiting; and D,
pellet delivery (both during p�100% condition). These as well as the following histograms (Figs. 3, 4) are presented with a bin size of 100
ms. Inall rasterplots, individualconsecutivetrialsarerepresentedashorizontal lines,withthefirst trialatthetoprow.Horizontalcalibration
denotes time (seconds), and vertical calibration denotes firing rate (fr) (hertz).
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neuronal responses (39%) were observed,
which could be divided into three sub-
groups. The first subgroup consisted of 32
neurons (47%) that specifically re-
sponded during rewarded but not unre-
warded trials [Fig. 4A: 25 (78%) and 7
(22%) neurons showed an increase or de-
crease in activity, respectively]. The sec-
ond subgroup consisted of 30 neurons
(44%), all showing a significant increase
in firing during both rewarded and unre-
warded trials (Fig. 4B). Within this group,
19 neurons (63%) demonstrated differ-
ential firing activity toward both the
rewarded and unrewarded condition:
responses were either larger for the re-
warded condition (7 neurons, 37%) or
unrewarded condition (12 neurons, 63%;
Mann–Whitney U test, p � 0.05). For the
remaining 11 neurons (37%), no differ-
ence in firing activity between the two
conditions was found. The third group
consisted of seven neurons (9%) that in-
creased their firing activity during unre-
warded but not rewarded trials (Fig. 4C).
To examine whether this type of response
occurs specifically in the context of task
performance, we tested whether it also oc-
curred during nose poking in the food
trough during ITIs. Because no odor cues
were provided and nose poking is pre-
sumably habit driven, a clear reward ex-
pectation may well be absent or at least
less pronounced during the ITI period.
Indeed, none of these neurons signifi-
cantly increased their firing rate in the ab-
sence of reward in the intertrial interval
(Fig. 4C). This indicates that the activity of
these neurons does not reflect motor be-
havior associated with visiting and de-
parting from the reward site but most
likely reflects the omission of reward
within the task context. Whether this phe-
nomenon signifies an error in reward pre-
diction or is related to attention and the
saliency of an omission event is an issue
that must await additional investigation.

Variability of the representation of
reward probability
To examine the extent to which firing-rate
variability throughout the various trial
phases and across the recorded popula-
tion is attributable to reward probability
(50, 75, or 100%), we calculated a measure labeled “parameter
variability” (Vpar; alternatively called “parameter sparseness”)
and contrasted this to a different measure capturing the overall
variability in firing rates across the population (Vpop, population
variability), regardless of the influence of reward probability. The
time windows used for this calculation were 0.7 s for the move-
ment period and 1.5 s for both the waiting and reward delivery
period. The mean Vpar, which is indicative of the response vari-
ability of the individual neurons associated with variations in

reward probability, was 0.29, 0.22, and 0.27 for the movement,
waiting, and reward delivery period, respectively (Fig. 5A–C).
The mean Vpop, expressing the variability in firing rate across the
population regardless of reward probability, was 0.76, 0.71, and
0.71 for the movement, waiting, and reward delivery phase, re-
spectively (Fig. 5D–F). These results demonstrate that the overall
population is marked by a high variability in firing rate, but the
firing rates of individual OFC neurons are modulated by reward
probability to a generally modest degree. However, in all three

Figure 3. Differential firing in relation to reward probability. A, Example of a unit showing differential firing toward
different reward probabilities during the waiting period. Activity is synchronized on nose entry into the food trough.
Activity of this neuron decreases with decreasing reward probability: all four conditions differ significantly from each other
except the p � 100 and 75% conditions. Fr, Firing rate. B, Overview of the significantly different firing rate profiles toward
reward probability found during both the movement (dashed lines) and waiting (solid lines) periods. Different units are
represented by different symbols. On the horizontal scale, reward probability (percentage) is plotted; the vertical scale
displays the peak firing rate of individual units in association with different reward probabilities, normalized to the peak in
the p � 100% condition. Note that only very few neurons exhibit distinct firing-rate peaks or valleys under maximal
uncertainty ( p � 50%). C, Activity of a neuron showing activity during the movement period as part of task performance
( p � 75% condition) and during the same behavior in the ITI.
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trial periods, a small subset of neurons was present that showed a
very high degree of modulation by reward probability (parameter
variability, range of 0.9 –1.0) (Fig. 5A–C).

Population coding of expected reward probability
The results described above indicate that activity of a restricted
subset of orbitofrontal neurons reflects expectancy of reward
coming up with a specific probability, which is generally consid-
ered to be tightly linked to expected value (Kalenscher and
Pennartz, 2008). We next asked whether not only single neurons but
also the whole population of recorded neurons codes informa-
tion regarding this reward parameter. Answering this question
may shed light on how target regions of the OFC may read out
information represented at the population level. Although the
analyses above suggest a probability representation at the single-
cell level, ensembles may not show a robust representation when,
for instance, noise or other types of response variability obscure
single-cell contributions. To this end, we decoded reward prob-
ability from the population activity for the three trial phases un-
der examination, using template matching as reconstructing
algorithm. For this analysis, the eight sessions with the largest
amount of simultaneously recorded cells were used, with a min-
imum of 27 cells per session; the total number of neurons re-
corded across the eight sessions was 338 (cell count per session
was 37, 51, 52, 27, 59, 39, 42, and 31, recorded from 2 rats). It
should be noted that the study of probability coding in the reward
delivery period primarily subserves the purpose of comparison
with the motor and waiting periods. If an orbitofrontal neuron

fires more vigorously on rewarded versus non-rewarded trials
(which is often the case as indicated by the single-unit data and is
likely to depend on direct sensorimotor feedback correlated to
food ingestion, taste, etc.), its accumulated spike counts will nat-
urally come to correlate with reward probability because often-
rewarded trial types will elicit more spikes than rarely rewarded
types, whereas no specific coding of probability can be said to
exist. On this account, we predicted that probability coding will
be more accurate during the reward period than during the an-
ticipatory movement and waiting periods.

The probability of reward (50, 75, or 100%) could be recon-
structed from ensemble activity during all three trial periods,
with a percentage correct significantly above the one-third
chance level (one-way ANOVA, p � 0.001 in all three cases; the
p � 0% condition was not part of our standard reconstruction
analysis because of the lower amount of trials, but see below).
Plotting the decoding score as a function of reconstruction en-
semble size showed that, for all trial phases, performance im-
proved with an increasing amount of cells, with the slope of the
decoding curve being significantly positive (linear regression; in
all cases, p � 0.001). The highest decoding scores obtained within
these periods were 44% for the movement period (at n � 27 cells)
and 48% (n � 27) and 44% (n � 23) for the waiting and reward
period, respectively (Fig. 6). That the optimal decoding perfor-
mance for the reward period was comparable with that of the two
anticipatory periods is remarkable and stands in contrast to the
prediction that population coding would be more accurate for

Figure 4. Differential firing after reward delivery during the rewarded and unrewarded condition. Activity in rewarded trials is synchronized on pellet delivery, in unrewarded trials at the same
time point as pellet delivery in rewarded trials. A, Example of a unit demonstrating an increase in firing activity solely during the rewarded trials. B, Activity of a different unit showing a double
correlate: both during the reward and waiting period (starting at �1.5 s), this neuron showed a significant increase in firing activity. During the reward phase, the increase in firing rate during
rewarded trials was significantly larger compared with unrewarded trials. No difference was found between the two conditions in the waiting period. C, This unit increased firing specifically during
unrewarded trials during the task. Activity did not significantly change during the ITI.
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this period because of the sensorimotor
feedback the rat receives during reward
consumption. Whereas the curves for the
movement and waiting periods both
showed a gradually rising decoding suc-
cess when ensemble size increased, the
curve for the reward period rose more
steeply at low cell counts, after which
decoding success saturated around en-
sembles sizes of �8 and higher. This dif-
ference suggests a higher redundancy of
coding in the reward period compared
with the anticipatory phases. This is sup-
ported by the finding that removal of cells
displaying the largest variability in their
response toward probability (i.e., pa-
rameter variability between 0.9 and 1.0)
(Fig. 5) resulted in decoding scores that
did not differ significantly from the de-
coding curves obtained using the entire
population.

Because we introduced new odors to
the rat in every novel recording session, it
can be argued that significant population
coding of probability should survive the
removal of early-learning trials, because
the rat will need this initial period to ac-
quire knowledge about odor–probability
associations. Although it is unknown a
priori at which time point in the session
neural representations of reward proba-
bility may begin to surface, we recalcu-
lated decoding scores when the first nine
trials were left out of the reconstruction
procedure, corresponding to the initial
period in which rats on average kept on
generating go responses to the odor cue
signaling 0% reward probability. Using
the last quarter of the trials for encoding
and the remaining trials for decoding, significant decoding was
found ( p � 0.001 for all periods). Similar results were found
when, after removal of the first nine trials, a quarter of the trials
was randomly selected for encoding and the remaining trials were
used for decoding ( p � 0.001 for all periods).

Contribution of individual cells to coding of reward probability
Until here, the success of probability reconstruction from popu-
lation activity was computed as a decoding score averaged across
100 groups of randomly selected neurons. This, however, does
not provide insight in the contribution of individual neurons to
an ensemble code for reward probability. To acquire more insight
into the redundancy versus sparsity of coding, we calculated for
all neurons the difference in the percentage of decoded informa-
tion when a specific cell was added to a group of five neurons
randomly selected from the same session. For each cell, this calcula-
tion was done 100 times, each time with a new randomly selected
group of five additional neurons. Apart from the consideration that
single cells may contribute reasonably to coding by such a relatively
small group (Fig. 6), this size was chosen arbitrarily.

Because for all three trial phases this analysis yielded similar re-
sults, we only provide the data for the waiting period. During this
period, 25% of the cells (n�85) made a minimal contribution to the
decoding success (between �0.5 and 0.5%), 40% (n � 135) made a

positive contribution (	0.5%) (average � SEM, 
5.5 � 0.4%),
whereas 35% (n � 118) made a negative contribution (�0.5%) to
the reconstruction, with an average of �5.2 � 0.5% (i.e., addition of
these cells led to a decrease in correct decoding). The average positive
contribution did not differ significantly from the negative one, as
examined with an unpaired t test. This lack of significance agrees
with the absence of a net positive slope in the reconstruction curve at
an ensemble size of 5 (Fig. 6B). We also examined the percentage of
cells showing an extremely strong contribution (more than 15% or
less than �15%). This showed that only 2% of the cells (n � 7) made
such extreme (positive or negative) contributions, with an average
contribution of 
 20 � 1.4 and �20 � 2.0%, respectively. Addi-
tional inspection of the distributions of single-cell contributions
confirmed that there was no particular subset of cells contributing
especially to the coding of reward probability and that the positive
and negative contributions were nearly symmetrically distributed
around zero, which is altogether consistent with a distributed repre-
sentation across populations that contain cells making highly vari-
able contributions.

Population coding of reward probability versus reward uncertainty
As already mentioned, reward probability and uncertainty are
linked in the sense that uncertainty is absent at probabilities of 0
and 100% and maximal at a probability of 50%. To examine

Figure 5. Distribution of population and parameter variability for the movement period (A, D), the waiting period (B, E), and
the reward period (C, F ). On average, parameter-related variability covered a broader range of values than population variability,
spanning the whole range from 0.0 to 1.0 (average of 0.29, 0.22, and 0.27 for the movement, waiting, and reward periods,
respectively). Variation in population variability was less, with values ranging from 0.5 to 1.0 (average of 0.76, 0.71, and 0.71 for
the movement, waiting, and reward periods, respectively).
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whether the observed population activity during the movement
and waiting periods reflects reward probability or uncertainty, we
examined probability reconstruction success by using unre-
warded trials ( p � 0%) for encoding. A first hypothesis holds

that, whenever reward probability is coded by OFC ensembles,
encoding by unrewarded trials and decoding by p � 50% trials
should yield decoding above chance, because the global differ-
ence in reward probability is smaller for these two trial types than
p � 0% versus p � 75% and p � 100% trials. In case OFC would
code uncertainty, however, one expects that encoding by unre-
warded trials and decoding by p � 100% trials result in a decod-
ing score above chance, because these two reward conditions are
more alike in terms of uncertainty than p � 0% versus p � 75%
and p � 50% trials. A third hypothesis holds that, in this proce-
dure, decoding scores for p � 50, 75, and 100% should be ran-
dom (33.3% success) because the p � 0% condition is set within
a different trial type (as signaled by a distinct odor), without
carrying over any quantitative information about reward proba-
bility to other trial types.

Given encoding by p � 0% trials, decoding for the movement
and waiting periods was similar in that p � 100% trials yielded
significant below-chance scores, whereas p � 50% trials were
significantly above chance (Fig. 7) (one-way ANOVA, p � 0.001).
For the p � 75% condition, decoding was at a random level in the
movement period but gradually decreased below this level in the
waiting period. When decoding scores for these two trial periods
were averaged across all reward probabilities, performance was
around chance level (data not shown). In agreement with the
single-unit data, these results indicate that the observed varia-
tions in population activity during these trial phases are attribut-
able to reward probability rather than uncertainty.

Discussion
The OFC has been strongly implicated in decision-making
under uncertain conditions (Bechara et al., 1996, 1997). Here we
examined to our knowledge for the first time whether and how
single-cell and population activity within OFC is affected by the
probability of future reward. The behavioral results showed ani-
mals to respond differentially depending on reward probability.
During the periods in which predictive information coding could
be studied (i.e., movement and waiting period), 22% of the cells
demonstrating expectancy-related activity showed firing-rate
changes differentiating between probabilities. This discrimina-
tory activity was represented at the population level as well: pre-
dicted reward probability could be reconstructed from ensemble
activity significantly above chance level for both phases. Al-
though the overall decoding scores may seem rather low, the task
required the animals to learn novel odor–probability associations
each session. To estimate reward probability accurately, animals
will need to accumulate experience across many trials. More-
over, there was no task requirement necessitating the animal
to discriminate expected probabilities, because the chance of
obtaining reward was not contingent on the speed of go
responses.

In addition to the waiting period, expectancy-related activity
was also found during the movement period. That this activity is
likely reward related and not primarily determined by motor
activity is supported by the absence of a significant neural re-
sponse when the same behavioral sequence was executed during
the intertrial interval (all 25 cells showed this difference) (Fig.
3C). Given the finding that our sample of cells showed transient
firing responses during task periods but no type of activity change
that arose during odor sampling and persisted throughout the
trial until reward delivery, the question comes up how reward-
predictive information may be neurally maintained during task
performance. Speculatively, one possibility holds that cells in an-
other brain area provide a working-memory-like buffer that is

Figure 6. Decoding of reward probability with an increasing number of neurons for the
movement (A), waiting (B), and reward (C) periods. Decoding time windows used were 0.7, 1.5,
and 5 s, respectively. The horizontal axis indicates the size of the reconstruction ensemble, and
the vertical axis indicates the percentage of trials in which reward probability was correctly
decoded. The horizontal dashed line indicates chance level (33.3%), and dotted lines flanking
the curves represent the 95% confidence interval (2 times the SE of proportion).
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active during task performance (cf. Mulder
et al., 2003), whereas another scheme
holds that ensembles of OFC neurons, ac-
tive at an early trial stage, transfer their
outcome-related information to other
OFC ensembles active at later trial stages
(cf. Baeg et al., 2003).

The probability of reward could be re-
constructed from population activity in
the reward period with a performance
comparable with the other two trial
phases. However, when instead of reward
probability the availability of reward was
reconstructed from population activity,
the decoding score went up to 89% (at n �
27 cells; data not shown). This indicates
that, during the reward period, the pre-
sentation of a reward is coded more reli-
ably than the overall reward probability.
This need not be surprising given that
neural activity during this period may be
determined by processes other than
“tracking” actual reward probability, for
example, taste sensations or ingestion,
which are closely related to processes of
reward appraisal.

Variability and distribution of the
representation of reward probability
That single units showed differential fir-
ing toward varying reward probability
leaves unanswered the question whether
probability of reward is represented in a
sparse or redundant manner within OFC,
i.e., by a few highly specifically tuned cells
or in a broadly distributed way. Therefore,
we first examined the firing-rate variabil-
ity attributable to probability and found
that this measure assumed relatively
modest values compared with the over-
all variability in mean firing rate across
the population. Second, except for the re-
ward period, decoding scores depended
only weakly on the size of the reconstruc-
tion ensemble (Fig. 6), and removal of
cells displaying the largest variability in
their response toward probability (i.e., parameter sparseness be-
tween 0.9 and 1.0) (Fig. 5) resulted in a decoding score for both
periods that did not differ significantly from the decoding curves
obtained using the entire population. Third, considering the
widely dispersed single-cell contributions to the decoding score,
with nearly symmetrical distribution of positive and negative val-
ues, these results indicate that reward probability is coded in a
broadly distributed manner within OFC. However, because the
decoding score did not rapidly saturate when cell count increased
in pre-reward periods (Fig. 6, compare A, B with C), coding does
not appear to be highly redundant in these phases, but instead
cells make variable contributions to it. It is important to address
whether and how a distributed representation of probability may
be used by other brain structures targeted by the OFC to guide
behavior and attention. How these structures integrate popula-
tion signals into adaptive behavioral decision-making is essen-
tially unknown, but it is of note that feedforward or recurrent

networks of units with broad tuning curves can extract sen-
sory, motor, or motivational variables from a source popula-
tion of noisy neurons (Zhang et al., 1998; Deneve et al., 1999).
Such networks may be implemented in target structures of
OFC such as higher associational cortical areas or striatopal-
lidal circuits (Uylings et al., 2003; Voorn et al., 2004). Inter-
esting in this respect is the result that nucleus accumbens
lesions disrupt probabilistic discounting as well (Cardinal and
Howes, 2005). Notably, network architectures capable of sus-
taining continuous attractors can read out population activity
by a natural form of template matching (Wu and Amari,
2005). Prefrontal output also reaches mesencephalic dopa-
mine cells (Phillipson, 1979; Uylings et al., 2003; Van De Werd
and Uylings, 2008), potentially supporting the generation of
phasic reward-prediction errors and of more tonic signals rep-
resenting reward uncertainty (Schultz et al., 1997; Fiorillo et
al., 2003).

Figure 7. Decoding scores for the various reward probabilities with an increasing number of neurons during the movement
period (A) and the waiting period (B) when spike vectors from unrewarded trials ( p � 0%) were used for encoding. In both task
phases, decoding for p � 50% trials was significantly above chance level (33.3%), whereas the score for p � 100% trials was
below chance level. Decoding performance for p � 75% was either at chance level (movement period) or decreased below chance
with increasing ensemble sizes (waiting period). When the decoding performance was averaged across all three probabilities,
curves were at chance level for both trial phases (data not shown).
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Probability versus uncertainty coding
A hotly debated issue is whether OFC codes expected reward
probability, uncertainty, or both. Functional magnetic resonance
imaging (fMRI) findings in humans by Tobler et al. (2007) and
Critchley et al. (2001) suggested that reward uncertainty rather
than probability is coded within lateral orbital areas. Recently,
Kepecs et al. (2008) recorded activity of single OFC neurons dur-
ing an odor categorization task in which decision confidence was
manipulated by presenting rats with odor mixtures and con-
cluded that uncertainty, or decisional confidence, was coded in
OFC. Both fMRI studies might be interpreted as contrasting with
our finding that reward probability, but not uncertainty, is pre-
dominantly coded in OFC (Fig. 7). However, the blood oxygen-
ation level-dependent (BOLD) signal as observed with fMRI is
not considered to reflect the spike output of a particular brain
area but rather the synaptic inputs from afferent structures and
local intracortical processing (Logothetis et al., 2001). Hence, the
limited spatiotemporal resolution of BOLD signals may explain
why modulations of neural activity as observed in the current
study may thus far have escaped detection with fMRI. The behav-
ioral design of Kepecs et al. (2008) was very different from our
design, because reward probability was not parametrically varied
as a function of stimulus identity, and no stimulus predicting the
null probability was included as highly certain but unrewarded
outcome. Although Kepecs et al. (2008) found OFC cells re-
sponding in agreement with their model of choice confidence
based on odor categorization, this confirmation was restricted to
a subset of neurons. Although only very rarely found, we did
identify 1 of 17 OFC neurons discriminating on the basis of un-
certainty, so the results from the two studies may not contradict
each other principally; uncertainty or probability coding may
predominate depending on task requirements.

Additional implications
It is still unclear whether parameters related to expected rein-
forcement or utility are coded by a form of integrative neural
activity subserving the role of a “common currency” within the
OFC or elsewhere in the brain, i.e., whether neurons code a
lumped measure of expected utility in which all relevant param-
eters (such as delay, magnitude, uncertainty) have been included
(Tremblay and Schultz, 1999; Montague and Berns, 2002; Padoa-
Schioppa and Assad, 2006; Kalenscher and Pennartz, 2008). As
suggested by Roesch et al. (2006), coding of time-discounted
rewards in rat OFC seems independent of coding of absolute
reward value. In contrast, previous findings by Roesch and Olson
(2004) in primate OFC indicated that neurons do code reward
value in a common currency: single-unit activity elicited by visual
cues associated with differently delayed or sized rewards was
shown to covary with both parameters. As demonstrated here,
the probability of future reward is population coded in a similar
manner within OFC as is the case for reward magnitude (van
Duuren et al., 2008). Both parameters are represented in a dis-
tributed manner by neurons that display a large diversity in pa-
rameter sensitivity. If independent parameter coding would turn
out predominant for single neurons, it is still possible that larger
OFC ensembles act as functional entities coding a common cur-
rency. The finding that both reward probability and magnitude
exert modest modulatory effects on single cells and that param-
eter information appears to be represented in a spatiotemporally
distributed form suggests that the ensemble level is at least as
relevant for studying the common currency problem at the
single-unit level.
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