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Chronic Cognitive Dysfunction after Traumatic Brain Injury
Is Improved with a Phosphodiesterase 4B Inhibitor

David J. Titus,'* ©Nicole M. Wilson,* “Julie E. Freund,! “Melissa M. Carballosa,' Kevin E. Sikah,!
Concepcion Furones,! W. Dalton Dietrich,' Mark E. Gurney,? and “Coleen M. Atkins'
The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, and
2Tetra Discovery Partners, Grand Rapids, Michigan 49503

Learning and memory impairments are common in traumatic brain injury (TBI) survivors. However, there are no effective treatments to
improve TBI-induced learning and memory impairments. TBI results in decreased cAMP signaling and reduced cAMP-response-element
binding protein (CREB) activation, a critical pathway involved in learning and memory. TBI also acutely upregulates phosphodiesterase
4B2 (PDE4B2), which terminates cAMP signaling by hydrolyzing cAMP. We hypothesized that a subtype-selective PDE4B inhibitor could
reverse the learning deficits induced by TBL. To test this hypothesis, adult male Sprague-Dawley rats received sham surgery or moderate
parasagittal fluid-percussion brain injury. At 3 months postsurgery, animals were administered a selective PDE4B inhibitor or vehicle
before cue and contextual fear conditioning, water maze training and a spatial working memory task. Treatment with the PDE4B inhibitor
significantly reversed the TBI-induced deficits in cue and contextual fear conditioning and water maze retention. To further understand
the underlying mechanisms of these memory impairments, we examined hippocampal long-term potentiation (LTP). TBI resulted in a
significant reduction in basal synaptic transmission and impaired expression of LTP. Treatment with the PDE4B inhibitor significantly
reduced the deficits in basal synaptic transmission and rescued LTP expression. The PDE4B inhibitor reduced tumor necrosis factor-o
levels and increased phosphorylated CREB levels after TBI, suggesting that this drug inhibited molecular pathways in the brain known to
be regulated by PDE4B. These results suggest that a subtype-selective PDE4B inhibitor is a potential therapeutic to reverse chronic
learning and memory dysfunction and deficits in hippocampal synaptic plasticity following TBI.

Key words: cAMP; cognition; learning; long-term potentiation; phosphodiesterase; traumatic brain injury

(s )

Currently, there are an estimated 3.2-5.3 million individuals living with disabilities from traumatic brain injury (TBI) in the
United States, and 8 of 10 of these individuals report cognitive disabilities (Thurman et al., 1999; Lew et al., 2006; Zaloshnja et al.,
2008). One of the molecular mechanisms associated with chronic cognitive disabilities is impaired cAMP signaling in the hip-
pocampus. In this study, we report that a selective phosphodiesterase 4B (PDE4B) inhibitor reduces chronic cognitive deficits after
TBI and rescues deficits in hippocampal long-term potentiation. These results suggest that PDE4B inhibition has the potential to
improve learning and memory ability and overall functioning for people living with TBI. j

ignificance Statement

United States and as many as 8 of 10 report cognitive disabilities
(Thurman et al., 1999; Lew et al., 2006; Zaloshnja et al., 2008).
The high prevalence of cognitive disabilities is due, in part, to the
vulnerability of the hippocampus, which exhibits bilateral atro-
phy years after the initial trauma even when not directly injured

Introduction

Traumatic brain injury (TBI) is a serious clinical problem affect-
ing ~1.7 million people in the United States each year at a cost of
$56 billion annually (Faul et al., 2010). Currently, it is estimated
there are >3.2-5.3 million individuals living with TBI in the
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(Bigler et al., 2002; Serra-Grabulosa et al., 2005). Although a
significant amount of experimental work has clarified the patho-
physiology of TBI, limited success has been obtained in translat-
ing therapies to the patient (McConeghy et al., 2012). Thus, there
is a continued need to investigate the cellular and molecular tar-
gets important in improving outcome in people living with TBI.

TBI significantly impairs cAMP signaling and results in hip-
pocampal synaptic plasticity deficits that translate into poor
functional outcome (Atkins et al., 2007; Titus et al., 2013b). In
previous studies, we discovered that this decrease in cAMP is
associated with an acute upregulation of an enzyme that degrades
cAMP, phosphodiesterase 4 (PDE4; Oliva et al., 2012; Wilson et
al., 2016). Inhibition of PDE4 by rolipram restores cAMP levels
and increases cAMP-response element-binding protein (CREB)
phosphorylation after contextual fear conditioning in brain-
injured animals (Titus et al., 2013b). Pan-PDE4 inhibition by
rolipram also significantly improves hippocampal long-term po-
tentiation (LTP) and learning after TBI (Titus et al., 2013a,b).
However, rolipram results in nausea and emetic side effects that
preclude clinical development (Robichaud et al., 2001). In the
context of TBI, postinjury rolipram treatment in the acute recov-
ery period also results in detrimental vascular perturbations (At-
kins et al., 2012, 2013). To translate a PDE4 inhibitor to the
chronic TBI patient, developing a more selective PDE4 inhibitor
that avoids side-effects associated with pan-PDE4 inhibition will
more likely achieve clinical success.

There are four PDE4 subfamilies; each encoded by a separate
gene (A-D; Houslay etal., 2005). Most PDE4 inhibitors described
to date, including rolipram and the FDA-approved roflumilast,
inhibit all four subfamilies, although recently PDE4B selective
inhibitors have been reported (Naganuma et al., 2009; Press and
Banner, 2009; Fox et al., 2014). Studies with genetically modified
mice have shown that the PDE4 genes subserve different func-
tions in the brain. PDE4A is involved in anxiety, PDE4B regulates
inflammation and alters anxiety levels, PDE4C is not a major
isoform in the brain or immune system and PDE4D is involved in
memory formation, depression, and adult neurogenesis (Jin et
al., 2005; Zhang et al., 2008; Li et al., 2011; Hansen et al., 2014;
McGirr et al., 2016).

Recently, the crystal structures of PDE4B and PDE4D have been
exploited to develop subtype-selective PDE4 inhibitors (Burgin et
al., 2010; Fox et al., 2014). The PDE4B selective inhibitor A33, 2-
(4-{[2-(5-chlorothiophen-2-yl)-5-ethyl-6-methylpyrimidin-4-
ylJamino}phenyl)acetic acid (Naganuma et al., 2009), has an IC, of
32 nM against PDE4B1, is 49-fold more selective for PDE4B versus
PDE4D and does not appreciably inhibit any other PDEs (Fox etal.,
2014). In comparison, rolipram has an IC,, of 225 nm toward
PDE4B and 288 nm toward PDE4D (Burgin et al., 2010). A33 en-
gages a C-terminal regulatory domain termed CR3 in contrast to
rolipram, which engages the N-terminal upstream conserved region
2 regulatory domain (Burgin et al., 2010; Fox et al., 2014). In the
present study, we characterized the hippocampal-dependent learn-
ing and synaptic plasticity deficits that occur in the chronic recovery
phase of TBL. We report that the PDE4B inhibitor A33 reduces learn-
ing and memory impairments and rescues expression of hippocam-
pal LTP after TBI.

Materials and Methods

Materials. Compound A33 (2-(4-{[2-(5-chlorothiophen-2-yl)-5-ethyl-
6-methylpyrimidin-4-ylJamino}phenyl)acetic acid; CAS 915082-52-9)
was synthesized as described previously (Naganuma et al., 2009). Inhib-
itory potency against human PDE4B3 was assayed as previously de-
scribed (Fox et al., 2014).
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Table 1. Physiological parameters

Parameter Treatment At surgery At perfusion
Weight, gm Sham + vehicle 393.0 = 21.0 600.0 = 18.2
Sham + A33 371.0 £ 217 636.0 = 33.1
TBI + vehicle 379.2 £ 121 612.9 £ 14.0
TBI + A33 382415 655.2 = 22.6
ATM TBI + vehicle 1.98 = 0.01
TBI + A33 2,02 £ 0.03

ATM, Atmospheres of pressure.

Fluid-percussion injury surgery. All experimental procedures were in
compliance with the NIH Guide for the Care and Use of Laboratory Ani-
mals and approved by the University of Miami Animal Care and Use
Committee. Adult male Sprague-Dawley rats (n = 127 total, 2-3 months
old, Charles Rivers Laboratories) were maintained on a 12 h light/dark
cycle and had ad libitum access to food and water. To determine the
minimum number of animals needed for these studies, a power analysis
was prospectively performed to detect a 20% difference in water maze
probe trial performance between groups at 80% power with a signifi-
cance level of 0.05 (Titus et al., 2013b). A sample size of 10 animals per
group was obtained. Animals were equally randomized before the exper-
iment to receive moderate parasagittal fluid-percussion injury (FPI) or
sham surgery, and treatment with vehicle or A33. Animals were anesthe-
tized with 3% isoflurane, 70% N, O, and 30% O, and maintained at 1-2%
isoflurane, 70% N,O, and 30% O,. A 4.8 mm craniotomy (3.8 mm pos-
terior to bregma, 2.5 mm lateral to midline) was made over the right
parietal cortex and a beveled 18 gauge syringe hub was secured to the
craniotomy site with cyanoacrylate and dental cement. The animals were
allowed to recover for 12-16 h while fasting with water ad libitum, and
then were re-anesthetized, intubated and mechanically ventilated
(Stoelting) with 0.5-1% isoflurane, 70% N,O and 30% O,. Rocuronium
(10 mg/kg) was administered through the tail artery to facilitate ventila-
tion and penicillin/benzathine (20,000 IU/kg, i.m.) was given at the start
of the surgery. A moderate (2.0 = 0.1 atm) fluid-percussion pulse (14-16
ms duration) was delivered to the right parietal cortex. Sham-operated
rats received all surgical manipulations except for the fluid-percussion
pulse. Rectal and temporalis muscle thermistors were used to maintain
core and brain temperatures at 36.6°-37.2°C. Blood gases (pO, and
pCO,), blood pH, and mean arterial blood pressure (MABP) were main-
tained within normal physiological ranges (Tables 1, 2). Buprenorphine
(0.01 mg/kg, s.c.) was administered at the completion of the surgery.
Exclusion criteria were as follows: mortality, >15% loss of body weight,
non-resolving infection at a surgical site, inability to feed or drink, motor
paralysis, listlessness, self-mutilation, excessive grooming leading to loss
of dermal layers, spontaneous vocalization when touched, or poor
grooming habits. Animals were monitored daily after surgery for the first
2 d, then evaluated and weighed every 2 weeks until completion of the
experiment. Attrition for sham surgery was 0% and for TBI surgery was
1% (1 animal that died at the time of surgery due to lung edema). Inves-
tigators were blinded to the animal surgery and drug treatment for all
behavior, electrophysiology, and histology analyses.

Drug administration. A33 was dissolved in DMSO at 1 mg/ml and 10
mM for the behavioral and electrophysiology experiments, respectively.
For behavioral testing, A33 (0.3 mg/kg, 6 ml/kg) or vehicle (6 ml/kg, 5%
DMSO in saline) were administered intraperitoneally (i.p.). For hip-
pocampal slice electrophysiology, A33 was diluted in artificial CSF
(aCSF) to 300 nm. Final DMSO concentration was 0.003%.

Electrophysiology. At 12 weeks postsurgery, animals were decapitated
while anesthetized with 3% isoflurane, 70% N,O and 30% O, for 4 min.
The brain was quickly removed and placed in sucrose-based aCSF con-
taining the following (in mm): 110 sucrose, 60 NaCl, 3 KCl, 1.25
NaH,PO,, 28 NaHCO;, 7 MgCl,, 0.5 CaCl,, 5 p-glucose, equilibrated
with 95% O,/5% CO, at 4°C. The ipsilateral hippocampus was dissected
and rapidly sectioned at 4°C into transverse slices 400 um thick using a
vibrating microtome (Leica). Slices were recovered for 20 min in 50:50
sucrose-based aCSF and standard aCSF (in mm: 125 NaCl, 2.5 KCl, 1.25
NaH,PO,, 25 NaHCO,, 10 p-glucose, 2 CaCl,, 1 MgCl,, saturated with
95% 0,/5% CO,) and then in standard aCSF for 1 h at room temperature
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Table 2. Physiological parameters

Parameter Treatment 15 min prior to FPI 15 min post-FPI
MABP, mmHg Sham + vehicle 118.1 £ 6.1 174 =38
Sham + A33 130.6 = 4.1 1292 = 2.7
TBI + vehicle 1232+27 1149 = 42
TBI + A33 1184 =35 1M1 =41
Blood p0, Sham + vehicle 1202 = 5.6 1226 = 44
Sham + A33 158.0 = 7.0 1538+ 9.2
TBI + vehicle 1555+ 8.9 1424+ 70
TBI + A33 1534 =57 1442 + 6.3
Blood p(0, Sham + vehicle 397 £0.7 38710
Sham + A33 39114 389+ 1.1
TBI + vehicle 38.7 0.7 37.0 = 0.6
TBI + A33 394 07 36.8 £ 0.6
Blood pH Sham + vehicle 7.43 = 0.01 7.44 +0.01
Sham + A33 746 = 0.01 747 = 0.01
TBI + vehicle 7.45 £0.01 7.47 £0.01
TBI + A33 7.44 £0.01 7.46 = 0.01
Head temperature, °C Sham + vehicle 36.7 = 0.0 36.7 = 0.1
Sham + A33 36.7 = 0.1 36.7 £ 0.1
TBI + vehicle 36.7 £ 0.0 36.7 = 0.0
TBI + A33 36.6 = 0.0 36.7 = 0.0
Body temperature, °C Sham + vehicle 370 0.0 370+ 0.0
Sham + A33 371+02 370 £ 0.1
TBI + vehicle 37.0 = 0.1 37.0 = 0.1
TBI + A33 37.1x01 36.9 £ 0.1

MABP, mean arterial blood pressure; p0,, partial arterial oxygen pressure; p(0,, partial arterial carbon dioxide
pressure.

(RT). After equilibration, slices were transferred to a submerged record-
ing chamber and perfused (2.5-3 ml/min) with aCSF maintained at 31°C
using a temperature controller (Warner Instruments). Field EPSPs
(fEPSPs) were recorded from CA1l stratum radiatum with glass elec-
trodes filled with 2 M NaCl (1-3 M) using a Multiclamp 700B amplifier
(Molecular Devices). Signals were low-pass filtered at 2 kHz and digitized
at 20 kHz with a Digidata 1440A interface and pClamp 10.4 software
(Molecular Devices). The Schaffer collateral pathway was stimulated
with a platinum-iridium cluster-stimulating electrode (tip diameter 25
pm, FHC). Input/output (I/O) curves were generated by measuring the
fEPSPs in response to stepwise current increases from 20 to 240 pA.
Paired-pulse facilitation (PPF) was measured with stimulus intervals be-
tween 12.5-250 ms, with stimulation intensity set at 40—50% of the max-
imum fEPSP. Before LTP induction, baseline responses were recorded at
40-50% of the maximum fEPSP at 0.033 Hz for at least 20 min. LTP was
induced by high-frequency stimulation (HFS) using a single train of 100
pulses delivered at 100 Hz at test stimulation intensity. A33 (300 nm) or
vehicle (0.003% DMSO) were bath-applied in aCSF beginning 10 min
before HFS and for 30 min after HFS. The tetanization response was
analyzed by integrating the entire HFS response (total) and integrating
the depolarization during last 50 ms of the HFS to determine steady-state
depolarization (Klann et al., 1998). Synaptic fatigue was calculated by
measuring each fEPSP during the HFS and normalizing this to the first
fEPSP during the HFS (Rutten et al., 2008).

Pharmacokinetic analysis. At 12 weeks after surgery, animals received
A33 (0.3 mg/kg, 6 ml/kg, i.p.). At 30 min after treatment, animals were
anesthetized (3% isoflurane, 70% N,O, and 30% O,, 5 min) and then
decapitated. The ipsilateral and contralateral parietal cortex and hip-
pocampus were dissected, snap frozen with liquid nitrogen, and stored at
—80°C. The cortical and hippocampal tissue were combined for analysis.
At the time of decapitation, trunk blood was collected and diluted with
500 mm K *-EDTA, pH 8.0. Blood was centrifuged at 3000 X g (10 min,
4°C), and plasma was removed and stored at —80°C. After precipitation
of protein with 0.1% formic acid, A33 levels were quantified by liquid
chromatography-tandem mass spectrometry using an Aquasil C-18 col-
umn with a gradient of acetonitrile in 0.1% formic acid on an Agilent
1200 (Agilent Technologies) followed by mass fragmentation using a
SCIEX QTRAP3200 to detect a mass fragment of 144.10. Levels of A33
were normalized to an internal standard.
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ELISAs. For the tumor necrosis factor-a (TNF-a) assessments at 6 h
postsurgery, animals received either A33 (0.3 mg/kg, i.p.) or vehicle (5%
DMSO in saline, 6 ml/kg) at 30 min and 5 h postsurgery. At 6 h after
surgery, animals were anesthetized (3% isoflurane, 70% N,O, and 30%
O,, 5 min) and decapitated. For the TNF-« and interleukin (IL)-183
assessments at 3 months postsurgery, animals received no treatment after
surgery and were decapitated under anesthesia (3% isoflurane, 70%
N,O, and 30% O,, 5 min) at 3 months postsurgery. The ipsilateral pari-
etal cortex and hippocampus were rapidly dissected on ice, snap frozen in
liquid nitrogen and stored at —80°C until use. Tissue was briefly soni-
cated at 4°C (10 s, setting 2, Branson sonifier 450) in 5 vol/wt for the
parietal cortex and 10 vol/wt for the hippocampus in lysis buffer [15 mm
Tris, pH 7.6, 0.25 M sucrose, 1 mm MgCl,, 1 mm EGTA, 1 mm DTT, 1.25
ug/ml pepstatin A, 10 ug/ml leupeptin, 25 pg/ml aprotinin, 0.5 mm
PMSF, 0.1 mm NayVO,, 50 mm NaF, 2 mm Na,P,0,, 1X phosphatase
inhibitor cocktail set II (EMD Millipore), 0.1% Igepal CA-630]. Total
protein was assayed using a Coomassie Plus assay kit (Thermo Fisher
Scientific). Each sample was assayed in duplicate following the manufac-
turer’s protocol (Rat TNF-a Quantikine ELISA RTA00; Rat IL-1 B/IL-
1F2 Quantikine ELISA RLB00; R&D Systems).

Western blot analysis. At 3 months after surgery, animals were anesthe-
tized (3% isoflurane, 70% N, O, and 30% O,, 5 min) and decapitated, and
the ipsilateral hippocampus was rapidly dissected on ice, snap frozen in
liquid nitrogen and stored at —80°C. Tissue was homogenized on ice
with a Dounce homogenizer in 750 ul of lysis buffer: 15 mm Tris, pH 7.6,
0.25 M sucrose, 1 mm MgCl,, 1 mm EGTA, 1 mm DTT, 1 M microcystin-
LR, 1.25 ug/ml pepstatin A, 10 wg/ml leupeptin, 25 ug/ml aprotinin, 0.5
mm PMSF, 1 X phosphatase inhibitor cocktail set IT (EMD Millipore), 0.1
mM Na;VO,, 50 mm NaF, and 2 mm Na,P,0,. Total protein was mea-
sured using a Coomassie Plus assay kit (Thermo Fisher Scientific). Sam-
ples were boiled with sample buffer for 9 min at 95°C. Equal amounts of
protein (25 or 40 ug/lane) were electrophoresed on 4—-15% SDS-PAGE
gradient gels (Bio-Rad Laboratories) or 12.5% SDS-PAGE gels and trans-
ferred to Immobilon-P PVDF membranes (EMD Millipore). Mem-
branes were probed with antibodies against PDE4B (1:500; H-56, Santa
Cruz Biotechnology), phospho-CREB (1:1000; 87G3, Cell Signaling
Technology) and CREB (1:500; 86B10, Cell Signaling Technology), and
then stripped and reprobed with antibodies against B-actin (1:10,000;
AC-15, Sigma-Aldrich). Blots were visualized with horseradish
peroxidase-conjugated secondary antibodies (1:1000; anti-rabbit 1gG
7074, anti-mouse IgG 7076, Cell Signaling Technology) and enhanced
chemiluminescence (Cell Signaling Technology) or Pierce ECL Plus Sub-
strate (Thermo Fisher Scientific) and were developed on X-ray film (Phe-
nix Research Products). Films were densitized using ImageJ 1.48v (NIH).
Levels of each protein were normalized to B-actin within each sample
and then normalized to average protein levels in sham animals.

Fear conditioning. Beginning at 12 weeks postsurgery, animals were
tested serially on fear conditioning (12 and 16 weeks postsurgery), water
maze (13 weeks postsurgery), working memory (14 weeks postsurgery),
shock threshold (16 weeks postsurgery), and then perfused at 5 months
postsurgery for atrophy and microglia analyses (see Fig. 3A). For cue and
contextual fear conditioning at 12 weeks postsurgery, animals were first
habituated to the apparatus (30.5 X 24.1 X 21 ¢cm, Coulbourn Instru-
ments) for 10 min to facilitate contextual fear conditioning (Rudy and
O’Reilly, 1999). On the following day, at 30 min before training, animals
received A33 or vehicle treatment. For training, animals were placed in
the apparatus for 120 s, and then a 30 s tone (75 dB, 2.8 kHz) was
delivered that coterminated with a 1 mA foot shock (1 s duration). Ani-
mals remained in the box for 60 s post-shock. The apparatus was cleaned
with 70% ethanol between trials. At 24 h and 1 month after training,
contextual fear conditioning was evaluated by placing the animals in the
apparatus and measuring freezing for 5 min. Contextual fear condition-
ing comparisons were made between freezing on the training day before
cue presentation (designated as training freezing) and freezing in the
context on the testing days. Cue fear conditioning was evaluated at 25 h
and 1 month after training by placing animals in an altered chamber with
changed ambient light, background noise, texture on the walls and floor,
as well as a novel odorant. Cue fear conditioning comparisons were made
between freezing on the testing day in the novel context before cue pre-
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sentation (designated as baseline freezing) and freezing during the cue
presentation. Video-based analysis was used to quantify freezing behav-
ior (FreezeFrame 3.32, Coulbourn Instruments). At the completion of
fear conditioning assessments, shock threshold was assessed at 16 weeks
postsurgery. Animals received vehicle or A33 at 30 min before shock
threshold testing and then received a 1 s foot shock every 30 s in 0.02 mA
increments beginning at 0.1 mA. The minimum shock intensity to elicit
a flinch, jump, or vocalization was recorded.

Water maze. At 13 weeks postsurgery, animals received A33 or vehicle
at 30 min before training in the water maze on each acquisition day.
Acquisition consisted of four trials per day over 4 d with an intertrial
interval of 4—6 min. Maximum trial duration did not exceed 60 s. If the
animal failed to navigate to the platform within 60 s, it was then guided to
the platform. Animals remained on the platform for 10 s. Path length to
reach the platform, escape latency, swim velocity, thigmotaxis, and per-
centage time spent floating were measured. Thigmotaxis was defined as
the time that an animal spent swimming within 13.5 cm of the wall.
Percentage time spent floating was defined as the amount of time an
animal was immobile below a threshold of 1.5 cm/s. At 24 h after the final
acquisition day, a probe trial (60 s duration) was given with the platform
removed. Animals did not receive any drug treatment on the day of the
probe trial. Time spent in each quadrant, number of platform zone
crossings and swim velocity were measured during the probe trial.
Data were analyzed using EthoVision XT 10 software (Noldus Infor-
mation Technology).

Working memory. At 14 weeks postsurgery, working memory was as-
sessed using a delayed match-to-place task in the water maze (Hoskison
et al., 2009). Animals received A33 or vehicle 30 min before testing on
each day. Four paired trials were given each day for 2 d; trial duration was
60 s. Time between each pair of trials was 4—6 min. The hidden platform
location remained invariant only for each pair of trials. Upon reaching
the platform, the animal remained on the platform for 10 s. Aftera 5 s
delay, the animal was released from the same site into the water to again
search for the hidden platform in the same location. Escape latencies on
the first location trial and subsequent match trial were measured. Data
shown are from Day 2.

Histology. At 5 months postsurgery, animals were anesthetized (3%
isoflurane, 70% N,O and 30% O,, 5 min) and transcardially perfused
with saline (80 ml) and then 4% paraformaldehyde (210 ml) in 0.1 M
phosphate buffer, pH 7.4. The brains were sectioned coronally (10 wm
thick) in a stereological series (150 wm apart). For atrophy analysis, serial
sections were stained with hematoxylin and eosin plus Luxol fast blue.
The ipsilateral and contralateral hippocampus and cortex between
bregma levels —3.8 to —5.8 mm were traced in serial sections (150 wm
apart) at 4X magnification using Neurolucida 10.50.2 (MBF Bioscience)
and an Olympus BX51TRF microscope (Olympus America). The con-
tralateral and ipsilateral volumes were calculated using Neurolucida
10.50.2 software. To account for differences in tissue shrinkage, the ipsi-
lateral volume was subtracted from the contralateral volume, and then
normalized to the contralateral volume to calculate the percentage of
atrophy.

For microglia quantification, sections were antigen-retrieved using
citrate buffer (10 mu citrate, pH 6.0) for 20 min. Sections were blocked
for 1 h at RT in blocking buffer (PBS containing 3% normal goat serum
and 0.4% TX-100), then incubated overnight at 4°C with anti-ionized
calcium binding adaptor molecule-1 antibody (Iba-1; 1:500; 019-19741,
Wako Chemicals) in blocking buffer. Sections were rinsed with PBS, and
then incubated with anti-rabbit secondary antibody conjugated to Alex-
aFluor 594 (1:200; A11037, Invitrogen) for 2 h at RT in blocking buffer.
Sections were mounted using VectaShield DAPI mounting medium for
fluorescence (H-1200, Vector Laboratories). All sections were processed
in parallel for immunohistochemistry. Bregma levels —3.3, —4.3, and
—5.3 mm were selected for analysis because the epicenter of the fluid-
percussion was —3.8 mm posterior to bregma. Two sections at each
bregma level were quantified and averaged. The ipsilateral parietal cortex
and hippocampus were contoured at 4X magnification using an Olym-
pus BX51 microscope (Olympus America) and Stereolnvestigator 5.65
software (MicroBrightField). Iba-1-positive cells were counted at 60X
magnification (1.42 NA objective) usinga 75 X 75 um counting frame in
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30 randomly placed sampling sites. Ramified microglia were identified as
cells with a small soma and having thin, branched processes, intermedi-
ate microglia were cells with a large soma and long, thick processes and
ameboid microglia were defined as cells with a large soma and few, short
processes. Confocal images were acquired with an Olympus FV1000 laser
scanning confocal microscope (Olympus America) and a 20X objective
(NA = 0.75, digital zoom 2.0). DAPI and Iba-1 expression were captured
using excitation wavelengths 405 and 543 nm, respectively. Multi-area
confocal scans were taken at 1.14 um z-steps keeping all parameters
constant (laser power, HV, gain, offset, and pinhole). Final images were
rendered using Imaris 8.2.0 software (Bitplane).

Data analysis. Data presented are mean * SEM. Significance was des-
ignated at p < 0.05. Statistical comparisons were made using GraphPad
Prism 6.05 and SigmaPlot 12.0. I/O responses, PPF, LTP, synaptic fatigue
during tetanization, physiological data during the surgery, cue and con-
textual fear conditioning, shock threshold, water maze data, and working
memory data were analyzed by three-way ANOVA (factors surgery X
drug treatment X trial or time) followed by two-way ANOVA (factors
surgery X drug treatment) for significant interactions and Tukey’s HSD
correction for multiple comparisons. Depolarization during tetaniza-
tion, A33 concentration in brain tissue, Western blot data, swim velocity,
atrophy, and Iba-1 cell counts were analyzed with a two-way ANOVA
(factors surgery X drug treatment) and Tukey’s HSD correction for mul-
tiple comparisons. TNF-« levels were analyzed with a one-way ANOVA
and Tukey’s HSD correction for multiple comparisons. A33 plasma lev-
els and IL-1 levels were analyzed with an unpaired Student’s  test.

Results

Persistent deficits in learning and memory are a commonality
among TBI survivors (Lew et al., 2006). To determine whether
hippocampal synaptic plasticity changes are involved in these
persistent learning and memory deficits and whether PDE4B in-
hibition could rescue these changes, we assessed synaptic plastic-
ity mechanisms in hippocampal slices from sham and TBI
animals at 3 months after surgery. The Schaffer collateral path-
way was stimulated and recordings were made in stratum radia-
tum of area CA1 (Fig. 1). Hippocampal slices were treated with
vehicle (0.003% DMSO in saline) or a PDE4B inhibitor, A33 at
300 nm. This concentration is tenfold higher than the IC5, against
PDE4B3 measured in vitro (27 = 2 nM, n = 20). Basal synaptic
transmission was significantly depressed in slices from TBI ani-
mals compared with sham animals (main effect of surgery:
F(1 350y = 123.95, p < 0.001) and a significant interaction of sur-
gery X drug treatment was observed (F, 555, = 20.19, p < 0.001).
A33bath application to TBI slices reversed the depression in basal
synaptic transmission (Fig. 1A). To determine whether presyn-
aptic release mechanisms were involved, PPF was assessed. TBI
significantly decreased PPF (main effect of surgery: F, ;o) =
6.18, p = 0.014), although there was not a significant interaction
of surgery X drug treatment (Fig. 1B). However, LTP expression
was impaired in hippocampal slices from TBI animals, and this
was improved with A33 bath application (Fig. 1C; main effect of
surgery: F(; 1350y = 307.61, p < 0.001; main effect of drug treat-
ment: F(; 1359y = 327.94, p < 0.001; interaction of surgery X drug
treatment: F| 15,0, = 284.22, p < 0.001). Analysis of responses
during the maintenance phase of LTP at 45— 60 min post-tetanus
revealed a significant interaction of surgery X drug treatment
(F(1,22) = 7.51, p = 0.012). A33 significantly rescued the mainte-
nance phase of hippocampal LTP (Fig. 1D). The changes in LTP
maintenance were not due to differences in depolarization dur-
ing the tetanus (Fig. 1E). Both total depolarization and steady-
state depolarization levels during the tetanization were not
significantly different between sham and TBI animals treated
with vehicle or A33 (Fig. 1F). Synaptic fatigue during the tetani-
zation was also not significantly different between sham and TBI
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Figure 1. Basal synaptic transmission and LTP were enhanced with the PDE4B inhibitor A33 in hippocampal slices from TBI animals at 3 months postinjury. 4, Input/output (I/0) responses in
stratum radiatum of area CA1 to Schaffer collateral stimulation were significantly shifted downward in hippocampal slices from TBI animals treated with vehicle (0.003% DMSO0). Bath application
of A33 (300 nw) to slices significantly reversed the TBI-induced depression of the fEPSP slope. Sham +vehicle: n = 8 slices/6 animals; Sham+A33: n = 8 slices/5 animals; TBI+vehicle:n = 10
slices/6 animals; TBI+A33: n = 8 slices/6 animals; ***p << 0.001 TBI+vehicle versus Sham -+ vehicle, Sham-+A33, or TBI+A33; “p << 0.001 TBI+A33 versus Sham+vehicle, or Sham-+A33;
three-way ANOVA with Tukey’s HSD correction for multiple comparisons. B, PPF was significantly decreased following TBI (p = 0.014 Sham vs TBI), but not improved with A33 treatment (300 nm).
Data represent the ratio of the second fEPSP slope to the first fEPSP slope. Sham +vehicle: n = 8 slices/6 animals; Sham+A33: n = 8 slices/5 animals; TBI+vehicle: n = 10 slices/6 animals;
TBI+A33:n = 8slices/6 animals. €, A33 significantly rescued TBI-induced deficits in hippocampal LTP. A33 (300 nwm) or vehicle (0.003% DMSO) were bath applied 10 min before and for 30 min after
tetanization (bar). Hippocampal LTP was induced with 1 X 100 Hz tetanization, 15 long (arrow). fEPSP slopes were normalized to baseline before tetanization. ***p << 0.001 TBI+vehicle versus
Sham+vehicle, Sham +A33, or TBI+A33; three-way ANOVA with Tukey’s HSD correction for multiple comparisons. D, Average of fEPSP slopes from 45 to 60 min post-tetanization. **p << 0.01,
*¥¥p < 0.001 versus TBI+vehicle; two-way ANOVA with Tukey’s HSD correction for multiple comparisons. E, Representative traces during the high-frequency tetanization. Scale bars: 0.5 mV, 75
ms. F, Total depolarization levels during tetanization and steady-state depolarization levels during the last 50 ms of the tetanization response were similar between slices from sham animals and
TBI animals treated with vehicle or A33. G, Synaptic fatigue during the tetanization. No significant differences were observed between groups. C—G, Sham+vehicle: n = 7 slices/6 animals;
Sham-+A33:n = 6 slices/5 animals; TBI+vehicle: n = 6 slices/6 animals; TBI+A33: n = 7 slices/6 animals.

animals treated with either vehicle or A33 (Fig. 1G). Theseresults ~ measured in vitro (27 nM or 10.4 ng/ml). These results indicate
indicate that the PDE4B inhibitor, A33, rescues expression of  that A33 can attain relevant concentrations in the brain against
hippocampal LTP and improves basal synaptic transmission at 3 ~ the PDE4B target.
months after TBI. PDE4 knock-out studies in inflammation models have re-
Next, we evaluated the distribution of A33 to the braininrats  vealed that PDE4B, but not PDE4A or PDE4D, regulates expres-
after systemic administration and the impact of brain injury on ~ sion of the proinflammatory cytokine TNF-« in circulating
this distribution (Fig. 2). Animals received sham surgeryormod-  leukocytes and peritoneal resident macrophages (Ashkenazi,
erate parasagittal FPI. At 3 months postsurgery, animals were  2002; Jin and Conti, 2002; Jin et al., 2005). To determine whether
treated systemically with A33 at 0.3 mg/kg (i.p.). At 30 min after =~ TNF-« was elevated in the injured brain at 3 months postinjury,
treatment, a time point relevant to the biochemical and behav-  the ipsilateral parietal cortex and hippocampus were assayed by
ioral analyses described below, plasma and brain tissue were har- ~ ELISA for TNF-a levels. TNF-a was not detectable at 3 months
vested to measure A33 levels. Plasma levels of A33 were identical ~ postinjury in either brain region. We also assayed for IL-13levels,
between sham and TBI animals after intraperitoneal dosing.  which were detectable, but not significantly elevated in the ipsi-
However, brain levels of A33 trended higher in TBl animals com-  lateral, injured parietal cortex and hippocampus (Sham cortex or
pared with sham animals when measured in either the ipsilateral ~ Sham hippocampus not detectable, TBI cortex 0.54 *+ 0.26 pg/mg
or contralateral cortex (effect of surgery: F, o) = 4.41,p = 0.069),  protein, TBI hippocampus 1.85 * 1.03 pg/mg protein, n =
although this difference was not statistically significant (Fig. 2A). ~ 6/group). Next, to determine whether A33 can reduce TNF-«
A33 has low brain distribution, with a similar B/P distribution of  levels in the injured brain, we assessed TNF-« levels at 6 h post-
2.4+ 0.2%and 3.2 * 0.4% in sham and TBI animals, respectively ~ surgery. We chose this time point because previous studies have
(n = 6/group). At the intraperitoneal dose of 0.3 mg/kg, brain  established that TBI elevates TNF-« levels maximally within 3—8
levels were 4- to 5-fold higher than the ICs, against PDE4B3  h after injury and returns to non-injured levels by 24 h after TBI
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(Taupin et al., 1993; Yakovlev and Faden,
1994; Fan et al.,, 1996; Knoblach et al.,
1999; Vitarbo et al., 2004; Lotocki et al.,
2006; Shojo et al, 2010; Ferreira et
al., 2013; Su et al., 2014; Tsai et al., 2015).
At 30 min postinjury, as well as 1 h before
kill, animals received 0.3 mg/kg A33 (i.p.)
or vehicle. TNF-a levels were significantly
increased in TBI animals and A33 treat-
ment significantly reduced this increase in
TNF-« (Fig. 2B). These data demonstrate
that systemic administration of A33 can
inhibit a signaling pathway that can be
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regulated by PDE4B after TBI. Western
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ter sham surgery or TBI indicated that
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tween sham and TBI animals (Fig. 2D).
These results indicate that several PDE4B
isoforms are present in the injured brain,
but are not upregulated in the chroni-
cally injured hippocampus at 3 months
postinjury.

Next, to determine whether PDE4B in-
hibition by A33 would improve chronic
learning and memory deficits after TBI,
animals received sham surgery or moder-
ate FPI and were allowed to recover for 3
months with no treatment (Tables 1, 2).
They were then tested serially on fear con-
ditioning (12 and 16 weeks postsurgery),
water maze (13 weeks postsurgery) and
working memory (14 weeks postsurgery;
Fig. 3A). Animals received either vehicle
or A33 treatment 30 min before training
on each behavioral task. During the sur-
gery, physiological parameters of MABP,
blood pO, and pCO, levels, blood pH, and
head and body temperature were monitored. These parameters
remained in physiological range for all animals except for one
TBIanimal. This one TBI animal was excluded due to mortality at
the time of surgery, which died within 1 h after brain trauma from
lung edema. The atmospheric levels of the fluid-pulse were not
significantly different between TBI animals randomized to ve-
hicle versus A33 treatment. All animal groups had weight gains
by the end of the behavioral testing at 5 months postsurgery
and these gains were not significantly different between treat-
ment groups (main effect of time: F, 4o, = 301.48, p < 0.001).

Cue and contextual fear conditioning were assessed at 12
weeks postsurgery (Fig. 3). Animals received either vehicle or A33
(0.3 mg/kg, i.p.) at 30 min before fear conditioning and were then
tested for fear conditioning recall in the absence of any drug
treatment at 24 h and 1 month after training. This dose was
chosen based on data demonstrating antidepressant effects of
A33 in the mouse forced swim test (ED5;, = 0.1 mg/kg, James
O’Donnell personal communication). A three-way ANOVA of
contextual fear conditioning indicated a significant interaction of
surgery X drug treatment X trial (Fig. 3B; F(, 99y = 3.43, p =
0.037). No significant differences in freezing during training were
observed between animal groups. At both 24 h and 1 month after
training, contextual fear conditioning was not significantly dif-
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Levels of A33 in the brain and plasma with systemic administration of A33 and effects on TNF-c levels. A, A33 levels
were assessed in the plasma and brain at 30 min after intraperitoneal administration (0.3 mg/kg). Sham and TBI animals were
evaluated at 3 months after surgery (n = 3 animals/group). B, TNF-c levels were not detectable (ND) in sham animals and
significantly increased in TBI animals at 6 h postinjury. A33 treatment significantly reduced TNF-c levels in TBI animals. Sham:n =
9; TBI+vehicle: n = 11; TBI+A33: n = 12; **p < 0.01, ***p < 0.001 versus Sham; “p << 0.05 versus TBI+vehicle; one-way
ANOVA with Tukey’s HSD correction for multiple comparisons. €, Representative Western blots of PDE4B isoform levels in the
hippocampus at 3 months after TBI. D, Densitometric results. PDE4B1/3, 4B4, or 4B2 levels did not significantly change at 3 months
after TBI. Sham: n = 6; TBl:n = 5.

ferent between sham animals treated with vehicle compared with
sham animals treated with A33. TBI animals treated with vehicle
demonstrated significantly less contextual fear conditioning
compared with sham animals treated with vehicle or TBI animals
treated with A33 when tested at 24 h after fear conditioning (sur-
gery X drug treatment interaction: F, 5,y = 7.52, p = 0.010).
When animals were re-assessed without drug treatment at 1
month after fear conditioning, TBI animals treated with vehicle
still froze significantly less compared with TBI animals treated
with A33 at 1 month after fear conditioning (surgery X drug
treatment interaction: F; 55y = 4.39, p = 0.045). For cue fear
conditioning, a significant interaction of surgery X drug treat-
ment X trial was observed with a three-way ANOVA (Fig. 3G;
F5.120) = 4.59, p = 0.004). A main effect of drug treatment was
observed in baseline freezing in the novel chamber at 24 h (vehi-
cle vs A33 treatment: F, 5,y = 4.57, p = 0.041) and 1 month
(vehicle vs A33 treatment: F(, 5oy = 7.29, p = 0.011) after fear
conditioning, and there was no significant interaction of sur-
gery X drug treatment for either time point in baseline freezing.
When freezing in response to the cue was assessed, there was a
significant interaction of surgery X drug treatment at both 24 h
(F130) = 7.75, p = 0.009) and 1 month after training (F(, 5y =
11.51, p = 0.002). At both assessment time points, cue fear con-
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Figure 3.  Contextual and cue fear conditioning impairments in TBI animals at 3 months postinjury were rescued by A33 treatment. 4, Treatment scheme and timeline of behavioral analysis.

Animals recovered for 3 months after surgery and then were tested serially on fear conditioning, water maze, working memory, retention of fear conditioning, and shock threshold before perfusion
at 5 months postsurgery. A33 or vehicle were administered 30 min before behavioral training on the indicated days (arrows). B, Contextual fear conditioning at 24 h and 1 month after
training. TBI+vehicle animals froze significantly less than Sham +vehicle animals or TBI+-A33 animals at both 24 h and 1 month after training. (, Cue fear conditioning was significantly
decreased in TBI+vehicle animals compared with Sham+vehicle or TBI+A33 animals. D, Shock threshold sensitivity was similar between all animal groups. Sham -+ vehicle: n = 6;
Sham+A33:n = 7; TBI+vehicle: n = 10; TBI+A33:n = 11; *p << 0.05, **p << 0.01 versus TBI+vehicle; two-way ANOVA with Tukey’s HSD correction for multiple comparisons.

ditioning was significantly decreased in TBI animals treated with
vehicle compared with sham animals treated with vehicle or TBI
animals treated with A33. There were no significant differences in
cue fear conditioning when tested for retrieval at 24 h or 1 month
after training for sham animals treated with vehicle versus A33.
These fear conditioning differences were not due to changes in
shock sensitivity since the minimal shock threshold to elicit a
flinch, jump or vocalization was not significantly different be-
tween animal groups (Fig. 3D).

Next, to determine whether A33 would improve learning in
another hippocampal-dependent learning task, the same cohort
of animals were tested in a water maze at 13 weeks postsurgery
using a hidden platform (Fig. 4). Escape latency (Fig. 4A) and
path length (Fig. 4B) to find the hidden platform were signifi-
cantly impaired in TBI animals compared with sham animals,
although there was no significant interaction between surgery X
drug treatment X acquisition day or main effect of drug treat-
ment for escape latency (main effect of surgery for escape latency:
F(1 120y = 34.20, p < 0.001; main effect of surgery for path length:
F(1120) = 13.27, p < 0.001). There was a main effect of drug
treatment for path length during acquisition (F(, ;,, = 6.71,p =
0.011). For both escape latency and path length, a main effect of
acquisition day was observed (escape latency: F; ;,,, = 48.76,
p < 0.001; path length: F(5 ,,,) = 43.35, p < 0.001). As PDE4B is
involved in mediating anxiety, we measured swim velocity (Fig.
4C), thigmotaxis (Fig. 4D), and percentage time floating (Fig. 4E)
during water maze acquisition. No significant differences in swim
velocity, thigmotaxis, or percentage time floating during acquisi-

tion were found between surgery and drug treatment groups. A
main effect of acquisition day was observed for thigmotaxis
(F(3,120) = 56.93, p < 0.001), with significantly more thigmotaxis
occurring on acquisition Day 1 versus Days 2, 3 and 4 (p <
0.001), as well as Day 2 versus Day 4 (p = 0.002). Similarly, a
main effect of acquisition day was observed for percentage time
floating (F(; 1,0, = 3.39, p = 0.020), with significantly more float-
ing occurring on acquisition Day 1 compared with acquisition
Days 3 and 4 (p < 0.05). To assess the search strategy, animals
were probed at 24 h after the final acquisition day (Fig. 4F).
Analysis of time spent in each quadrant indicated a significant
interaction for surgery X drug treatment X quadrant (F; 5y =
3.65, p = 0.015). TBI animals treated with vehicle spent signifi-
cantly less time in the target quadrant compared with sham ani-
mals treated with vehicle or A33, or TBI animals treated with A33
(surgery X drug treatment interaction F, o) = 4.92, p = 0.034).
The number of platform zone crossings were also significantly less in
TBI animals treated with vehicle versus A33, or sham animals treated
with vehicle or A33 (Fig. 4G; surgery X drug treatment interaction:
F1 30) = 6.47,p = 0.016). Nossignificant differences were observed in
sham animals treated with vehicle versus A33 for time spent in the
target quadrant or number of platform zone crossings during the
probe trial. Swim velocity during the probe trial was not significantly
different between surgery and drug treatment groups (data not
shown). These results indicate that A33 treatment significantly im-
proves long-term spatial memory retention.

Working memory is another modality significantly impaired
in TBI survivors (McAllister et al., 2006). To assess this memory
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Figure4. Effects of A33 on acquisition and retention of water maze performance at 3 months after TBI. A, Escape latency during water maze acquisition was significantly longer in TBI animals
compared with sham animals (p << 0.001). There was no significant effect of drug treatment. B, Path length to reach the hidden platform during water maze acquisition at 3 months postsurgery.
TBI animals had significantly longer path lengths to find the hidden platform compared with sham animals (p << 0.001). A significant effect of drug treatment was also observed (p = 0.011), and
there was no significant interaction of surgery X drug treatment. C, There were no significant differences in swim velocity between sham and TBI animals or drug treatment groups during
acquisition. D, Thigmotaxis was not significantly different between sham and TBI animals or drug treatment groups. E, Percentage time floating during acquisition was not significantly different
between TBI and sham animals or drug treatment groups. F, Probe trial performance was assessed at 24 h after the final acquisition day. TBI+ vehicle animals spent less time in the target quadrant
compared with sham animals treated with vehicle or A33 or TBI+A33 animals. G, Platform zone crossings during the probe trial. TBI+vehicle animals crossed the platform zone significantly less
than Sham+vehicle, Sham+A33, and TBI+A33 treated animals. Sham+vehicle: n = 6; Sham+A33: n = 7; TBI+vehicle: n = 10; TBI+A33: n = 11; **p < 0.01, ***p << 0.001 versus
TBI+vehicle animals; two-way ANOVA with Tukey’s HSD correction for multiple comparisons.
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modality, we modified the water maze to assess spatial working
memory at 14 weeks postsurgery by training the animals to locate
a hidden platform that remains invariant only between pairs of
trials separated by 5 s (Fig. 5; Hoskison et al., 2009). A three-way
ANOVA did not indicate a significant interaction of surgery X
drug treatment X trial. There was a main effect of surgery
(F1.60) = 7.66, p = 0.007), drug treatment (F, 49, = 6.69, p =
0.012), and as expected, trial (F(, 5y = 20.55, p < 0.001). These
results indicate that A33 treatment improves working memory in
both sham and TBI animals.

A characteristic of chronic TBI is progressive atrophy and the 0
hippocampus is a highly vulnerable structure (Bigler et al., 2002; Location Match
Serra-Grabulosa et al., 2005). To assess atrophy, at the comple-
tion of behavioral testing, we measured cortical and hippocampal ~ Figure5.  Spatial working memory. There was nossignificant interaction between surgery X
volume (Fig. 6). Significant cortical atrophy (Fig. 6 A, B) was ob-  drug treatment X trial. TBI animals had significantly longer escape latencies compared with
served in TBI animals (main effect of surgery F,; 50, = 116.94,p < sham animals (p = 0.007), and A33 treatment improved working memory in both sham and
0.001) and there was no effect of A33 treatment. A main effect of TBl animals (p = 0.012). Sham+vehicl_e: n= 6;ISham+A33:.n = 7;TBI_+vehicIe: n= 10;
surgery (F(y 40, = 1349, p < 0.001), but not drug treatment TBI+A33:n = 11; three-way ANOVA with Tukey’s HSD correction for multiple comparisons.
(F130) = 3.69, p = 0.064) was also found with hippocampal
atrophy (Fig. 6C), and there was no significant interaction of Microglia, which are known to remain persistently activated
surgery X drug treatment (F(, 50, = 3.19, p = 0.084). These re-  after TBI, were quantified using Iba-1 immunostaining and ste-
sults indicate that intermittent A33 treatment did not improve  reological methods in the ipsilateral parietal cortex and hip-
pathology in the chronic TBI recovery period. pocampus (Fig. 7; Acosta et al., 2013; Smith et al, 2013;
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Cortical and hippocampal atrophy at 5 months postsurgery. 4, Representative sections stained with hematoxylin and eosin plus Luxol fast blue at bregma level —3.0 mm. Scale bar, 1

mm. B, Cortical atrophy. C, Hippocampal atrophy. Significant cortical (p << 0.001) and hippocampal atrophy (p << 0.001) were observed in TBI animals treated with vehicle or A33. No significant
main effect of drug treatment or interaction of surgery X drug treatment were observed. Sham+vehicle: n = 6; Sham+A33: n = 7; TBI+vehicle: n = 10; TBI-+A33 n = 11; two-way ANOVA

with Tukey's HSD correction for multiple comparisons.

Glushakova et al., 2014; Kabadi et al., 2014; Loane et al., 2014).
There was a significant increase in total Iba-1-positive cell counts
at 5 months post-TBI in both the ipsilateral parietal cortex (Fig.
7 A, B,D—F; main effect of surgery at bregma —3.3 mm: F, ,,, =
6.19, p = 0.019) and hippocampus (Fig. 7C,G-I; main effect of
surgery at bregma —3.3 mm: F, ,,, = 35.58, p < 0.001; main
effect of surgery at bregma —4.3 mm: F, ,,, = 38.33, p < 0.001;
main effect of surgery at bregma —5.3 mm: F, ,,, = 50.50, p <
0.001) in TBI animals compared with sham animals. There was
no significant effect of drug treatment or interaction of surgery X
drug treatment for total Iba-1-positive cells in either the ipsilat-
eral parietal cortex or hippocampus. When differentiated by
morphology as ramified, intermediate or ameboid, there was a
shift from ramified morphology in sham animals to more inter-
mediate and ameboid cell types in the ipsilateral parietal cortex of
TBI animals, and there was no effect of drug treatment or inter-
action of surgery X drug treatment (Fig. 7D—F). Ramified Iba-1-
positive cells were decreased in the ipsilateral parietal cortex of
TBI animals compared with sham animals (Fig. 7D-F; main ef-
fect of surgery at bregma —3.3 mm: F, ,,) = 12.51, p = 0.001;
main effect of surgery at bregma —4.3 mm: F, ,,, = 21.16, p <
0.001; main effect of surgery at bregma —5.3 mm: F, ,,, = 21.39,
p < 0.001). In contrast, there was a significant increase in the
number of intermediate Iba-1-positive cells in the ipsilateral pa-
rietal cortex (Fig. 7D, F; main effect of surgery at bregma —3.3
mm: F(, 5,y = 21.12, p < 0.001; main effect of surgery at bregma
—5.3 mm: F(, ,;y = 10.70, p = 0.003). In addition to the increase
in intermediate Iba-1-positive cells, there was also an increase in
the number of ameboid Iba-1-positive cells in the ipsilateral pa-
rietal cortex (Fig. 7D—F; main effect of surgery at bregma —3.3
mm: F(, ,,y = 12.26, p = 0.002; main effect of surgery at bregma
—4.3 mm: F(, ,,) = 6.33, p = 0.018; main effect of surgery at
bregma —5.3 mm: F, ,,, = 14.65, p < 0.001). Similar morpho-
logical shifts were observed in the ipsilateral hippocampus. There
was a significant increase in intermediate Iba-1-positive cells in
the ipsilateral hippocampus (Fig. 7G—I; main effect of surgery at
bregma —3.3 mm: F,,, = 41.29, p < 0.001; main effect of
surgery at bregma —4.3 mm: F, ,,, = 47.92, p < 0.001; main
effect of surgery at bregma —5.3 mm: F, ,,) = 42.66, p < 0.001),
as well as ameboid Iba-1-positive cells (Fig. 7G-I; main effect of
surgery atbregma —3.3 mm: F, ,,, = 8.95, p = 0.006; main effect

of surgery at bregma —4.3 mm: F, ,,, = 8.08, p = 0.008; main
effect of surgery at bregma —5.3 mm: F(, ,,) = 7.62, p = 0.010) in
TBI animals compared with sham animals. There was no signif-
icant effect of A33 treatment or interaction of surgery X drug
treatment for morphology differentiation of Iba-1-positive cells
in the hippocampus. Overall, these results suggest that TBI causes
an increase in Iba-1-positive microglia that persists for months
after injury, and that treatment with A33 does not significantly
alter the number, or morphology of Iba-1-positive microglia.

TBI decreases levels of basal CREB phosphorylation at 3
months postinjury (Atkins et al., 2009). To determine whether
A33 can rescue this depression in basal CREB phosphorylation,
we treated animals with A33 or vehicle (0.3 mg/kg, i.p.) at 3
months postsurgery, and then assayed the ipsilateral hippocam-
pus at 30 min post-treatment by Western blotting for changes in
CREB phosphorylation (Fig. 8). TBI resulted in a significant de-
crease in basal phospho-CREB levels (main effect of surgery:
F 16 = 17.61, p < 0.001), and this was rescued with A33 treat-
ment (Fig. 8B; surgery X drug treatment interaction: F(, ) =
4.78, p = 0.044). No significant differences in total CREB
levels were observed between groups. There was also no sig-
nificant effect of A33 treatment on phospho-CREB levels in
sham animals. These results indicate that TBI results in a de-
pression in phospho-CREB levels that can be elevated with a
PDE4B inhibitor.

Discussion
Over 3 million individuals are living with chronic TBI disabilities
and 70—-85% report learning and memory impairments (Lew et
al., 2006; Zaloshnja et al., 2008). This is an unmet need with no
current effective therapy (Wheaton et al., 2011). Our laboratory
has found that TBI results in CREB activation deficits during
learning (Titus et al.,, 2013b). In this study, we determined
whether a selective PDE4B inhibitor would improve learning and
memory in the chronic phase of TBI. Our data demonstrate that
a PDE4B inhibitor has procognitive benefits when administered 3
months postinjury. A33 improved hippocampal LTP, crossed the
blood—brain barrier at relevant concentrations and improved
performance in several learning tasks.

Targeting PDE4 as a therapeutic for TBI using pan-PDE4 in-
hibitors has been hampered by significant side effects. Rolipram,
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Figure 7.  Iba-1-positive cells in the ipsilateral parietal cortex and hippocampus at 5 months postsurgery. A, Representative images immunostained with Iba-1 (red) and counterstained with
DAPI (blue) at bregma level —3.3 mm. Images at 20X magnification spanning the ipsilateral parietal cortex to the hippocampus (cx, cortex; ec, external capsule; DG, dentate gyrus). Scale bar, 100
m. B, Higher-magnification of the parietal cortex. Scale bar, 25 wm. €, Higher-magpnification of the dentate gyrus. Scale bar, 50 rm. Quantification of Iba-1-positive cells in the ipsilateral parietal
cortex (D—F) and hippocampus (G—/) at bregma levels —3.3, —4.3, and —5.3 mm. Iba-1-positive cells were classified as ramified (Ram), intermediate (Inter), or ameboid (Ameb) based on
morphology. Sham+vehicle: n = 6; Sham+A33:n = 7; TBI+vehicle: n = 7; TBI+A33 n = 11. A main effect of surgery was observed, but there was no significant effect of drug treatment or
interaction of surgery X drug treatment. *p << 0.05, **p << 0.01, ***p < 0.001 Sham versus TBI; two-way ANOVA with Tukey’s HSD correction for multiple comparisons.
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Figure8.  Phosphorylated CREB levels in the ipsilateral hippocampus at 3 months post-TBI.
A, Representative Western blots of phosphorylated CREB, CREB, and 3-actin. B, Densitometric
results. Phosphorylated CREB levels were significantly decreased at 3 months post-TBland were
increased with A33 treatment; n = 5/group. *p << 0.05, ***p << 0.001 versus TBI+vehicle;
two-way ANOVA with Tukey’s HSD correction for multiple comparisons.

a pan-PDE4 inhibitor, improves cognition but contradictorily
worsens pathology and produces side effects of nausea and emesis
(Robichaud et al., 2001; Atkins et al., 2012; Titus et al., 2013b).
PDEA4D, but not PDE4B, is linked with emesis (Robichaud et al.,
2002; Naganuma et al., 2009; Burgin et al., 2010). In our studies,
a relatively low dose of A33 (0.3 mg/kg) improved cognition,
while a much higher dose of 100 mg/kg was tolerated without
emesis (Naganuma et al., 2009).

A33 inhibits all PDE4B isoforms and is 49-fold more selective
toward PDE4B compared with PDE4D, and does not appreciably
inhibit other PDEs (Naganuma et al., 2009; Fox et al., 2014).
Contrary to our previous studies demonstrating that PDE4B2
was significantly upregulated between 30 min to 24 h post-TBI, at
3 months after TBI, PDE4B isoforms were present but not up-
regulated above sham levels (Oliva et al., 2012; Wilson et al.,
2016). To evaluate the feasibility of A33 for inhibiting PDE4B in
the injured brain, we measured brain concentrations of A33 at the
dose used for behavior assessment. A33 achieved brain concen-
trations 4- to 5-fold higher than the PDE4B IC;, and at least
tenfold less than the IC;, of other PDEs (Fox et al., 2014). How-
ever, a caveat is that the animals were not perfused before analy-
sis, thus both blood and brain tissue were measured. A33 B/P was
low in both sham and TBI animals, which was expected since A33
is a P-glycoprotein substrate as shown by MDRI-MDCK cell
transport studies (efflux ratio = 14.4, M.E.G. unpublished data).
Current studies are underway to improve the pharmacokinetic
properties of A33.

A33isareversible inhibitor of PDE4B (Fox et al., 2014). It was
not possible to directly measure inhibition of PDE4B in the brain
after A33 treatment because methods to isolate PDE4B from
other PDE4 isoforms in brain homogenates would dilute the in-
hibitor (Clapcote et al., 2007). As a surrogate to assaying PDE4B
inhibition, we measured TNF-« levels to assess whether A33 in-
hibits a pathway known to be regulated by PDE4B (Jin et al.,
2005). We chose TNF-a because inflammatory cells from
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PDE4B, but not PDE4A or PDE4D, knock-out mice have reduced
TNF-a levels in response to inflammatory stimuli (Jin and Conti,
2002; Jin et al., 2005). TBI stimulates TNF-a and PDE4B2 expres-
sion within 30 min after injury which lasts for up to 24 h (Vitarbo
et al., 2004; Oliva et al., 2012), although a few studies have ob-
served increased levels of TNF-a at 1-7 d post-TBI (Su et al,,
2014; Tsai et al., 2015). In accordance with previous studies, we
did not detect measurable levels of TNF-a by ELISA at 3 months
postsurgery (Yakovlev and Faden, 1994; Knoblach et al., 1999).
Therefore, we assessed TNF-a levels at 6 h postsurgery and found
that A33 significantly reduced TNF-« acutely after TBI, suggest-
ing that an inflammatory pathway mediated by PDE4B is inhib-
ited with A33 (Jin and Conti, 2002; Jin et al., 2005). However, this
result does not demonstrate that A33 selectively targeted PDE4B
in vivo and a limitation of this study is whether brain-specific
inhibition of PDE4B was the mechanism for the cognitive im-
provements was not directly determined.

PDE4 knock-out mice and mice with a mutation in the cata-
lytic domain of PDE4B have distinctive behavioral phenotypes.
Pde4b™’~ mice have no observable phenotype in hippocampal
LTP and standard learning and memory measures (Siuciak et al.,
2008; Zhang et al., 2008; Rutten et al., 2011). In contrast,
Pde4d ™~ mice have enhanced LTP and hippocampal-dependent
memory (Rutten et al., 2008; Li et al., 2011; Schaefer et al., 2012).
Like Pde4b™"~ mice, Pde4a™’~ mice do not have enhanced learn-
ing, and both Pde4a " and Pde4b™’~ mice have increased anx-
iety (Zhang et al,, 2008; Hansen et al., 2014). Mice with a
mutation in the catalytic domain of PDE4B (PDE4B Y?38</¥335C)
have reduced anxiety (McGirr et al., 2016). In this study, A33
administration did not alter baseline freezing during fear condi-
tioning, or increase thigmotaxis in the water maze, suggesting
that the improvement in fear conditioning with A33 may not be
due to increased anxiogenic behavior. However, further experi-
ments are required to definitively determine whether A33 alters
anxiety levels. The behavioral differences between Pdedb™ ™~
mice, PDE4B Y?*8</¥3%5C mjce, and A33-treated rats may be due
to differences in the assessment of a developmental manipulation
of PDE4B versus acute inhibition, as well as interaction with the
injured brain. Given that we did not observe any significant ef-
fects of A33 on learning and memory in sham animals with the
exception of spatial working memory, this suggests that TBI in-
duces hippocampal-dependent LTP and learning deficits that are
improved with a PDE4B-selective inhibitor. However, whether
the improvements in learning and memory are directly mediated
by improvements in hippocampal synaptic plasticity remains to
be causally established.

In the hippocampus, PDE4B protein expression is restricted
to the dentate gyrus, although PDE4B mRNA is also found in
areas CAl and CA3 (Cherry and Davis, 1999; Pérez-Torres et al.,
2000; Reyes-Irisarri et al., 2008; Lakics et al., 2010; Johansson
et al., 2012). However, other studies indicate that PDE4B is
involved in synaptic plasticity in other subregions of the hip-
pocampus beyond the dentate gyrus. Pde4b™’~ mice have en-
hanced basal synaptic transmission in area CA1 (Rutten et al.,
2011). PDE4B3 transcription is upregulated in area CA1 after
LTP induction (Ahmed and Frey, 2005). Additionally, LTD in
area CAl is enhanced in Pde4b™’" mice, although unaltered in
PDE4B Y358¢/¥358C mijce (Rutten et al., 2011; McGirr et al., 2016).
Reversal learning in the water maze is impaired in Pde4b™’~ mice,
but enhanced in PDE4BY?*8¢/Y358C€ mice (Rutten et al., 2011;
McGirr et al., 2016). These results suggest that LTD and cognitive
flexibility are potential outcome measures to investigate with A33
treatment.
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The underlying mechanism for the improvements in learning
and memory after TBI with A33 is currently unknown. The ani-
mals received eight doses of A33 between 3 and 4 months post-
surgery. The half-life of A33 in the brain is 3.8—4.5 h in mice
(M.E.G., unpublished data), suggesting that the drug may have
been active for a reasonable duration to alter mechanisms in
addition to synaptic plasticity. One potential mechanism
may be hippocampal neurogenesis. Both Pde4b™’~ and
PDE4B Y?%8</¥3%8C mjce have increased adult neurogenesis in the
dentate gyrus (Zhang et al., 2008; McGirr et al., 2016). TBI in-
creases neurogenesis transiently, which is then chronically re-
duced and may have been altered with A33 (Dash et al., 2001;
Urrea et al., 2007; Potts et al., 2009; Atkins et al., 2010). Another
potential mechanism mediated by A33 is chronic inflammation.
PDE4B regulates proinflammatory cytokine expression in micro-
glia and macrophages and activated microglia are increased
within the brain for months after trauma (Acosta et al., 2013;
Loane et al., 2014). However, microglia numbers were not signif-
icantly altered by A33. Furthermore, we did not detect measur-
able levels of TNF-« in either the cortex or hippocampus at 3
months postinjury. Studies to determine whether A33 impacts
neurogenesis or other inflammatory mechanisms may yield in-
sights into the processes involved in the cognitive improvements
with A33 treatment.

Currently, there are several clinical trials to improve long-
term cognitive impairments after TBI. Hyperbaric oxygen,
amantadine, amino acid supplementation, methylphenidate,
sildenafil, citicoline, and aerobic exercise are among the thera-
peutics being investigated in chronic TBI patients (Wheaton et
al., 2009; McDonnell et al., 2011). There are also several clinical
trials testing cognitive rehabilitation and the combination of re-
habilitation with a pharmacological cognitive enhancer, such asa
PDEA4B inhibitor, may ultimately be the optimal strategy (Cice-
rone et al., 2000; Rohling et al., 2009). As with the cholinesterase
inhibitors used for the treatment of Alzheimer’s disease, which
address cholinergic hypofunction, treatment with a PDE4B in-
hibitor may address hypofunction in signaling pathways using
CREB phosphorylation.

Use of PDE4 inhibitors to improve cognitive impairments due
to aging or injury is a promising therapeutic route. There are
several PDE inhibitors in clinical trials to improve cognition in
healthy aging adults, as well as Alzheimer’s disease and mild cog-
nitive impairment (Garcia-Osta et al., 2012; Sakurai et al., 2013;
Schwam et al., 2014; Shim et al., 2014). This study demonstrates
that short-term treatment with a PDE4B inhibitor improves syn-
aptic plasticity, and learning and memory when delivered at the
time of learning at 3 months after TBI. These findings support the
approach of targeting subtype-selective PDE4B inhibition to re-
store cognitive function during the chronic recovery phase of
TBI.
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