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Change in Choice-Related Response Modulation in Area
MT during Learning of a Depth-Discrimination Task
is Consistent with Task Learning

Takanori Uka, Ryo Sasaki, and Hironori Kumano
Department of Neurophysiology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo 113-8421, Japan

What are the neural mechanisms underlying improvement in perceptual performance due to learning? A recent study using motion-
direction discrimination suggested that perceptual learning is due to improvements in the “readout” of sensory signals in sensory-motor
cortex and not to improvements in neural sensitivity of the sensory cortex. To test the generality of this hypothesis, we examined this in
a similar but different task. We recorded from isolated neurons in the middle temporal (MT) area while monkeys were trained in a
depth-discrimination task. Consistent with earlier reports using direction discrimination, we found no long-term improvement in MT
neuron sensitivity to depth, although monkey performance improved over months with extensive training, even when taking out the
effect of behavioral biases. We further addressed improvement in the readout of sensory signals by focusing on choice-related response
modulation [choice probability (CP)]. CP increased with training, suggesting an improvement in the readout of sensory signals from MT.
CP, however, correlated more strongly with lapse rate than psychophysical threshold, suggesting that changes in readout may be re-
stricted to early phases of learning. To test how behavioral learning, as well as the magnitude of CP, transferred across visual fields, we
measured CP variation in one hemifield after training monkeys on the depth-discrimination task in the opposite hemifield. CP was large
from the beginning of training in the untrained hemifield, even though a small but significant improvement in sensitivity was observed

behaviorally. Overall, our findings are consistent with the idea that increases in CP reflect task learning.

Introduction
Perceptual learning refers to the improvement in performance
on a perceptual discrimination or detection task. Learning is
often restricted to the exact stimuli and is often visual-field-
specific (Fiorentini and Berardi, 1980; Schoups et al., 1995;
but see Jeter et al., 2010; Zhang et al., 2010). This has led to the
view that learning occurs in early visual areas containing neu-
rons with small receptive fields (Karni and Sagi, 1991). Indeed,
an increase in the sensitivity of sensory neurons has been
found in areas V1 (Schoups et al., 2001) and V4 (Yang and
Maunsell, 2004; Raiguel et al., 2006) after learning of an
orientation-discrimination task. The change in sensitivity,
however, is minimal and is unlikely to explain the magnitude
of learning observed behaviorally.

Using a motion-direction discrimination task, Law and
Gold (2008) showed that perceptual learning can be explained
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by an improvement in the “readout” of sensory signals (Mol-
lon and Danilova, 1996; Dosher and Lu, 1999; Petrov et al.,
2005; Michel and Jacobs, 2008; Jacobs, 2009) in a sensory—
motor area. They recorded simultaneously from the middle
temporal (MT) area and the lateral intraparietal (LIP) area in
monkeys and found that the rate of build-up activity in LIP
increased with learning, whereas sensitivities of MT neurons
to motion did not change throughout the course of training.
They also showed that choice-related response modulation
[choice probability (CP)] increased for MT neurons that were
sensitive to changes in motion coherence. Law and Gold
(2008) suggested that, due to learning, the monkeys became
capable of selectively reading out optimal sensory information
from neurons with relevant information, and thus behavioral
performance improved.

In this study, we addressed the generality of this idea by
testing monkeys in a similar but different discrimination task.
We recorded from isolated neurons in area MT while monkeys
learned a depth-discrimination task. It is fairly well estab-
lished that MT contains neurons that are selective for binoc-
ular disparity (Maunsell and Van Essen, 1983; DeAngelis and
Uka, 2003) and that these neurons are relevant for execution
of the depth-discrimination task (DeAngelis et al., 1998; Uka
and DeAngelis, 2003, 2004, 2006; Chowdhury and DeAngelis,
2008).

Consistent with Law and Gold (2008), we found no long-term
improvement in the sensitivities of MT neurons to depth, al-
though monkey performance improved with extensive training.
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We also measured CP and found an in-
crease with training. CP, however, corre-
lated more strongly with lapse rate than
psychophysical threshold. To test how
behavioral sensitivity, as well as the
magnitude of CP, transferred across vi-
sual fields, we trained monkeys on the
depth-discrimination task at a fixed location
and subsequently recorded activity from the
hemisphere ipsilateral to the trained loca-
tion while monkeys learned to perform the
task in the opposite hemifield. The mon-
keys’ behavior quickly improved in the
untrained hemifield. CP, however, was
sufficiently large from the beginning of
training in the untrained hemifield and did
not increase across training sessions. The re-
sults are consistent with the idea that in-
creases in CP reflect task learning.

Materials and Methods

The general experimental procedures for single-
unit recording from area MT of awake monkeys
were described in detail previously (Uka and
DeAngelis, 2003). All animal care, training, and
experimental procedures were in accordance
with the National Institutes of Health guidelines
and were approved by the Juntendo University
Animal Care and Use Committee.

Subjects and surgery

Experiments were performed using four (3
male and 1 female) Japanese monkeys (Macaca
fuscata) weighing 4-9 kg. A post for head re-
straint and a recording chamber were chroni-
cally implanted in each monkey. We implanted
scleral search coils into both eyes to monitor
eye movements (Judge et al., 1980). The re-
cording chamber was mounted over the occip-
ital cortex ~17 mm lateral and 14 mm dorsal to
the occipital ridge at an angle of 25° above the
horizontal, such that area M T was accessed af-
ter passing through striate cortex and extrastri-
ate visual areas in the lunate sulcus.

Visual stimuli

The monkeys sat in a primate chair and faced
a flat-screen 22-inch CRT color monitor
(HM204DA; liyama) placed at a viewing dis-
tance of 57 cm. The display subtended a visual
angle of 40° X 30°, had a resolution of 1280 X
960 pixels, and was refreshed at 100 Hz. Visual
stimuli were generated using a dual CPU work-
station running Windows XP. Random-dot
stimuli were programmed in Microsoft Visual
C+ + using the OpenGL libraries and were dis-
played by an OpenGL accelerator board with
quad-buffered stereo support (Quadro4 980
XGL; NVIDIA). Each random-dot stereogram
(RDS) was presented within a circular aper-
ture. Dot density was 64 dots per square degree
per second, with each dot subtending ~0.1°.

The starting position of each dot within the aperture was newly random-
ized for each trial. Precise disparities and smooth motion were achieved
by plotting dots with subpixel resolution with the hardware anti-aliasing

capabilities of the OpenGL accelerator board.
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Figure 1. Depth discrimination task. 4, A random-dot stereogram was presented within a circular aperture slightly larger than the
neuron'’s receptive field (RF), and dots moved at the neuron’s preferred velocity (arrow). Filled and open dots represent left- and right-half
images, respectively. Regions of the 40° XX 30° screen outside the receptive field were filled with flickering zero-disparity background dots
(gray). Saccade targets were located 5° above and below the fixation point, corresponding to “far” and “near” choices, respectively. B, Time
course of a discrimination trial. The fixation point (FP) first appeared along with the background (Bgnd) dots. After the random-dot
stereogram was presented for 1.5 s, the fixation point and dots were extinguished, and two choice targets appeared. Monkeys reported the
depth of the stimulus by making a saccade to one of the two targets. ¢, Manipulation of task difficulty. The depth signal strength was
adjusted by varying the binocular correlation. At 100% binocular correlation (left), all dots within the receptive field were presented at
either the neuron’s preferred disparity (i.., short horizontal line inside gray oval) or the disparity that elicited a minimal response (i.e., null
disparity). At 50% binocular correlation (middle), half of the dots had random disparities, thus forming a 3D cloud of disparity noise. At 0%
correlation (right), all dots were assigned random disparities, making the stimulus ambiguous.

Stereoscopic images were displayed by presenting the left and right
half-images alternately at a refresh rate of 100 Hz (50 Hz for each eye).
The monkeys viewed the display through a pair of ferro-electric liquid
crystal shutters (DisplayTech) that were synchronized to the video re-
fresh such that one shutter was closed while the other was open. Ghosting
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Figure 2.

200%. Dotted line indicates 96%.

effects were minimized by presenting red dots on a black background, as
the decay of the red phosphor is much faster than that of green or blue
phosphor.

Pretraining

Behavioral tasks and data acquisition were controlled by a commercially
available software package (TEMPONET; Reflective Computing) and
on-line data analyses were done using MATLAB (MathWorks). The po-
sitions of both eyes were sampled at 1 kHz and stored at 250 Hz. Monkeys
were first trained on a fixation task in which they were required to fixate
on a yellow spot (0.15° X 0.15°) within a 2.0° X 2.0° electronic window.
Monkeys received a water or juice reward for maintaining fixation
throughout a 1.5 s trial. When the monkey’s conjugate eye position left
the fixation window prematurely, the trial was aborted.

After fixation training, monkeys were subsequently trained on a
direction-discrimination task to acclimate to a two-alternative
forced-choice task. A random-dot stimulus that moved either upward
or downward was presented on each trial, and the monkeys were
required to report whether the dots moved up or down by making a
saccade to one of two targets (located 5° below and above the fixation
point, respectively) that appeared 200 ms after stimulus offset. The
saccade had to be made to one of the two targets within 1 s after their
appearance, and the saccade endpoint had to remain within 2.5° of the
target for at least 150 ms to be considered a valid choice. Correct
responses were rewarded with a drop of water or juice. The location of
the aperture was 10° to the left of the fixation point. The aperture size
was 10° and dot speed was 10°/s at zero disparity. Discrimination
training began with 100% motion coherence trials, and lower coher-
ences were gradually introduced after the monkey reached at least
75% correct responses. The range of coherence levels was then pushed

Pl
0 10 20 30 40 50 60 70 80 90 100

Analysis of psychophysical performance. A, Stimulus location for all recording sessions in the two monkeys. Circles
correspond to the aperture locations where random-dot stimuli were presented. Aperture locations were determined from recep-
tive field maps and area summation curves for each neuron. B, Long-term improvement in psychophysical performance. Lapse rate
(error rate at 96% correlation, triangles) and psychophysical thresholds (circles) are plotted as a function of daily recording sessions
separately for the two monkeys. Solid lines denote exponential fits excluding thresholds >96%. Thresholds >96% are plotted as
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downward gradually over many weeks of
training until the monkey’s performance
reached a plateau and did not improve
further.

Electrophysiological recordings

A tungsten microelectrode (tip diameter 7-15
um, impedance 0.5-2 M) at 1 kHz; Frederick
Haer) was advanced into the cortex through a
transdural guide tube using a micromanipula-
tor (MO-951; Narishige) mounted on the re-
cording chamber. Single neurons were isolated
using a conventional amplifier with a bandpass
filter (500—-5000 Hz) and a window discrimi-
nator (Bak Electronics). Times of occurrence
of action potentials and trial events were stored
to disk with 1 ms resolution. Area MT was rec-
ognized based on interpreting the pattern of
gray matter and white matter encountered
during electrode penetrations and on the phys-
iological response properties of both single
neurons and multiunit clusters.

s
=
o

o
o

voley asdeT

Depth-discrimination task and
experimental protocol

After training on the direction-discrimination
0.0 task was completed, two of the four monkeys
(monkey G and monkey P) were trained on the
depth-discrimination task (Fig. 1) while we re-
corded activity from MT neurons. In the
depth-discrimination task, the monkeys were
required to report whether dots within an RDS
were near (crossed) or far (uncrossed) com-
pared with the plane of fixation by making a
saccade to the bottom or top target, respec-
tively. All dots within the RDS moved coher-
ently (100% motion coherence) at a velocity
tailored to each MT neuron. The disparity sig-
nal was titrated by manipulating the percent-
age of binocularly correlated dots in the RDS. Correlated (signal) dots
were assigned one of two fixed disparities (crossed vs uncrossed) during
each trial, and the remaining (noise) dots were assigned random dispar-
ities within the range from —2° to 2° (Fig. 1C). Flickering background
dots were presented at zero disparity to help anchor the monkey’s ver-
gence posture (Fig. 1A, gray dots).

The experimental procedures were as follows. After isolating an MT
neuron, we crudely mapped the receptive field and estimated the neu-
ron’s preferred direction, speed, and horizontal disparity. Next, we quan-
titatively measured the direction, speed, size, and horizontal disparity
tuning of each neuron. All tuning measurements were done in blocks of
randomly interleaved trials, and responses were averaged across three to
five repetitions of each distinct stimulus. Preferred values were deter-
mined online by visual inspection of the tuning curves. For the disparity-
tuning curves, the trough of the curve (null disparity) was also
determined.

Following these tests, we recorded while the monkey performed the
depth-discrimination task. Binocular correlation and stimulus disparity
(preferred and null) were varied in blocks of randomly interleaved trials.
The binocular correlation was always 0, 3, 6, 12, 24, 48, and 96%. When-
ever possible, data were collected for 40 repetitions of each unique stim-
ulus condition, a total of 560 trials per daily session. If the monkey ceased
to perform or neuronal isolation was lost prematurely, experiments were
concluded for that particular day. Data were acquired for at least 10
repetitions (i.e., 140 trials). The average number of repetitions was
36.4 £ 7.59 (mean * SD; median: 40), and the average number of total
trials was 510 = 106 (median: 560).

To test for transfer effects across the visual field, we trained the
remaining two monkeys (monkey M and monkey K) on the depth-
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Table 1. Time constant of psychophysical parameters
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Initial training

Transfer

Exponential fit

Nonparametric

Exponential fit

Nonparametric

Psychophysical threshold

Lapserate Excluding >96% Including >96% Lapserate Psychophysical threshold Lapserate Excluding >96% Including >96%

Psychophysical threshold

Lapserate Psychophysical threshold

Monkey G
Monkey P
Monkey M
Monkey K
Human

6.8
17.6
37.6

8.0

1.5

9.1
20.1
165.2
9.1
26.1

8.9
221
56.8

7.8
12.1

19
54
151
36
19

31
n
160
50
30

NA

NA
14
2.7
13

NA

NA
33
41
0.70

NA

NA
14
33
2.2

NA NA
NA NA
30 30
16 14

3 10

discrimination task at a fixed location with-
out neural recording following completion
of training on the direction-discrimination
task. The stimulus location was 5.4° to the
right (for monkey M) or left (for monkey K)
of fixation, and the aperture size was fixed at
7° these were the median eccentricity and
receptive field size of the recorded neurons
from monkey G and monkey P. Each day,
groups of motion direction, speed, and hor-
izontal disparities were randomly chosen
from parameters used in recording sessions
from monkey G and monkey P. After exten-
sively training the monkeys, we subsequently
recorded from area MT in the ipsilateral
hemisphere, so that the receptive field of the
recorded neuron would be on the side oppo-
site the trained hemifield. During recording,
the monkeys were trained on the depth dis-
crimination task at the receptive field loca-
tion, which was an untrained location for the
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Data analysis

Neural responses were calculated from the fir-
ing rate during the 1.5 s stimulus presentation
period. Spontaneous activity was calculated us-
ing the response to a blank screen.

Sensitivity a (spikes/s?corr)

Calculation of psychophysical metrics
Lapse rate and psychophysical thresholds. Mon-
key performance was evaluated by calculating
lapse rates (Law and Gold, 2008) and psycho-
physical thresholds (Britten et al., 1992; Uka
and DeAngelis, 2003). Lapse rates were deter-
mined as the monkeys’ error rate at 96% cor-
relation, the highest correlation level used in
our study. Psychophysical thresholds were de-
termined by plotting the monkeys’ correct re-
sponses as a function of binocular correlation,
which were then fit with a cumulative Weibull
function given by the following:

Bias / Sensitivity
Bl / u(T)

Figure 3.
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Bias analysis. A, The amount of bias is plotted as a function of recording sessions separately for the two monkeys.

Biases larger than 5 are plotted as 5. B, Sensitivities are plotted as a function of recording sessions separately for the two monkeys.

p=(1—=2A) = (0.5—A)e @

where cis the binocular correlation of the stim-
ulus, p is the proportion of correct responses,
defines the threshold at 82% correct, 3 gives the slope of the curve, and A
is associative (high correlation) error. Here, A does not equal lapse rate
described above. Learning rates were determined by fitting an exponen-
tial function to the daily lapse rate and psychophysical threshold curves.
Because thresholds larger than 96% are unreliable, we estimated the time
constant in two ways, one excluding thresholds >96% and another using
all data and clipping thresholds larger than 200% at 200%. We further
determined a nonparametric time constant. We determined the me-
dian lapse rate and threshold of the last 10 sessions in each monkey.

Sensitivities larger than 30 are plotted as 30. , The relative contributions of biases compared with sensory signals are plotted as a
function of recording sessions separately for the two monkeys. Values larger than 2 are plotted as 2.

We then determined the session where lapse rates or thresholds were
lower than the median lapse rate and threshold of the last 10 sessions
in three sequential sessions.

Sequential bias. Behavioral biases can interfere with calculation of sen-
sitivity especially early during learning. We attempted to analyze and
eliminate biases dependent on the sequence of previous trials (sequential
bias). Here, we calculated sequential biases using the Weiner kernel anal-
ysis (Gold et al., 2008). Following Gold et al. (2008), we first defined
choice residual (i.e., bias) as the difference between the predicted prob-
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eral strategy underlying bias by fitting the
first-order kernel with exponential func-
tions, assuming that the dependence of bias
on previous trials decay with time. As in Gold
et al. (2008), the first-order kernel with
. positive lags (thus only causal relations
were considered) was fit with two double-
exponential functions to calculate two filters,
one for correct choices and another for er-
rors: filters were calculated separately for
correct and incorrect choices to capture the
effect of reward on bias (i.e., such as win-
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stay/lose-alternate strategies). Trial-by-trial
choice residuals were then estimated (se-
quential biases, S,, described below) by con-
volving the sequence of binary choices with
the two filters followed by summation.

To calculate sensitivity taking out the effect
of bias, the estimated choice residuals were
then incorporated in the psychometric func-
tion and choice data were newly fit with the
following function:
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where free parameters A is associative error, a is
sensitivity, 3, is static bias, and 3, is the weight
for sequential bias. T is 1.5 s, ¢ is binocular
correlation, and S, is sequential bias on trial #.
The remaining parameters were set to values
. used previously (m = 1.25, ¢ = 0.3, r, = 10

spikes/s) (Eckhoff et al., 2008). The amount of
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ability of making a preferred choice for a given stimulus and the actual
binary choice. The predicted probability of making a preferred choice for
a given stimulus ranged from 0 for null choices to 1 for preferred choices,
determined from the fits to the psychometric function and taking into
account the sign of the stimulus. The actual binary choice was also de-
fined to be 1 for preferred choices and 0 for null choices. Because the
predicted probability of making a preferred choice ranged from 0 to 1,
and the actual binary choice was either 0 or 1, choice residual ranged
from —1 when the predicted probability of making a preferred choice
was 1 but the actual choice was the null choice (0) to 1 when the predicted
probability of making a preferred choice was 0 but the actual choice was
the preferred choice (1) (Gold et al., 2008, their Fig. 2 B).

Next, the dependence of choice residual on previous trials was deter-
mined using the Wiener kernel analysis. Using the Wiener—Hopf equa-
tion, the Weiner expansion of the function relating past choices to the
sequence of choice residuals were calculated as W, = Ryx Ryx, where
R is the autocorrelation matrix of the binary choice sequence and R x
is the cross-correlation matrix of the binary choice and choice residual
sequence.

Since this matrix captures most of the structure underlying bias,
including idiosyncratic structures in the data, we estimated the gen-

10 20 30 40 50 60 70 80 90 100

No long-term improvement in neuronal threshold. A, Neuronal thresholds are plotted as a function of recording
sessions separately for the two monkeys. Thresholds larger than 96% are plotted as 200%. Dotted line indicates 96%. B, NP ratios
are plotted as a function of recording sessions separately for the two monkeys. NP ratios were calculated by dividing neuronal
thresholds by psychophysical thresholds. Sessions with thresholds >96% were excluded. C, Long-term increase in CP. CPs are
plotted as a function of recording sessions separately for the two monkeys. Dotted line indicates 0.5.

bias for each session was quantified as the mean
absolute B, which incorporates both static and
sequential biases.

Calculation of neuronal thresholds

To characterize the sensitivity of MT neu-
rons in the depth-discrimination task, we
used receiver operating characteristic (ROC)
analysis to calculate neuronal thresholds based on
the “anti-neuron” formulation (Britten et al.,
1992; Uka and DeAngelis, 2003). An ROC
curve was calculated from the response distributions to the preferred
and null disparities at each correlation level. The area under the ROC
curve was taken as the ability of an ideal observer to discriminate
between the two disparities based solely on the responses of the re-
corded neuron (and an assumed anti-neuron with opposite preferred
and null disparities). A plot of the ROC area as a function of binocular
correlation defines the neurometric function, which was fit with the
cumulative Weibull function given above, with associative error fixed
at zero.

Calculation of choice probability

We quantified the relationship between MT responses and the animals’
choices by computing CP using ROC analysis (Britten et al., 1996; Uka
and DeAngelis, 2004). At each disparity and binocular correlation level,
MT neuron responses were sorted into two groups based on the choice
that the animal made at the end of each trial (i.e., preferred choices vs null
choices). An ROC curve was calculated from these response distribu-
tions, and the area under the ROC curve gave the CP for that disparity/
binocular correlation combination. To arrive at a single grand CP for
each neuron, responses were normalized (using z-scores) separately for
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each disparity/binocular correlation combina-
tion, and the normalized responses were then
combined across stimulus conditions into a
single pair of distributions for preferred and
null choices. Trials from disparity/binocular
correlation levels in which the monkeys pre-
ferred one target >75% of the time were ex-
cluded (Uka and DeAngelis, 2004). ROC
analysis on this pair of distributions yielded the
grand CP.

Measurement of symmetry of
disparity-tuning curves

To measure the symmetry of each disparity-
tuning curve around zero disparity, the curve
was fit with a Gabor function that was con-
strained to have its Gaussian envelope centered
at zero disparity:

(d)?
R(d) =Ry, + AX e %5

X cos(2mf(d) + D),

where d is the stimulus disparity, R, is the
baseline response level, A is the amplitude, o
is the standard deviation of the Gaussian, fis
the frequency of the sinusoid, and ® is the
phase of the sinusoid. ® was then wrapped
into the range from 0 to 7/2 (90°), and this
was used as an estimate of the symmetry
of the disparity-tuning curve around zero.
Values close to 0 indicate even symmetry,
whereas values close to /2 indicate odd
symmetry.

Results

In this study, we trained monkeys on a
depth-discrimination task while we re-
corded activity from neurons in area MT.
As we were interested in how neural char-
acteristics changed due to learning, ideally
we should have recorded from the same
neuron throughout the course of learn-
ing. Because this was not possible, we re-
corded from different neurons each day
and investigated how characteristics among
neurons changed due to learning.

Perceptual learning is known to often
be specific for visual features such as reti-
notopic location (Schoups et al., 1995).
We therefore aimed to record from neu-
rons with similar receptive field locations
by penetrating the electrode each day
through the same transdural guide tube.
Figure 2 A shows receptive field locations,
or stimulus locations used for training,
for all neurons recorded from the two
monkeys that were recorded from the
beginning of training. Although stimulus
location varied, eccentricities were re-
stricted. Eccentricities ranged from 3.33°
to 13.6° (median = 5.4°), with the major-
ity (81.9%) within the range of 4.0° to
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Figure5.  Transfer across visual field. 4, Stimulus location for all recording sessions in monkey M and monkey K. The black circle
corresponds to the location where random-dot stimuli were presented during training. After training at the location shown with
the black circle, recordings commenced. Red circles correspond to the aperture locations where random-dot stimuli were presented
during recording. Aperture locations were determined from receptive field maps and area summation curves for each neuron. B,
Long-term learning at the trained location. Lapse rate (triangles) and psychophysical thresholds (circles) are plotted as a function
of sessions for training at the fixed location shown with the black circle in 4. Solid lines denote exponential fits excluding thresholds
>96%. Thresholds larger than 96% are plotted as 200%. Dotted line indicates 96%. C, Long-term learning at new locations after
learning in the opposite visual field. Red triangles and circles show lapse rate and psychophysical thresholds, respectively, at new
locations determined from the receptive field maps and area summation curves of the neuron under study. Black triangles and
circles correspond to lapse rate and psychophysical thresholds, respectively, at the trained location shown with the black circle in 4,
using the same stimulus parameters other than location and aperture size. These data were obtained the day after recording. Solid
lines denote exponential fits excluding thresholds >96%. Thresholds larger than 96% are plotted as 200%. Dotted line indicates
96%. D, Psychophysical threshold ratios (untrained/trained) are plotted as a function of recording sessions. Session where either
threshold was >>96% is plotted at 10. Sessions where both thresholds were larger than 96% were excluded. Filled circles denote
sessions with thresholds that were significantly different between trained and untrained hemifields (Bootstrap, p << 0.05).

Thus, stimulus parameters other than location varied widely

7.0°. We recorded from all MT neurons that we could isolate, ~ among daily sessions. A total of 70 and 98 recording sessions,
including several neurons with very weak or no apparent dispar-  consisting of 37,854 and 47,778 total trials, were performed for
ity tuning. This was done so that we would not bias our sampling. ~ monkey G and monkey P, respectively.
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rate of lapse rate and psychophysical

A Monkey M Monkey K threshold by fitting the curves in Figure
a ° See . 2 B with an exponential function and de-
g 4 4 termining the time constants (Law and
X oo Gold, 2008). Because thresholds larger
% 3 31 e ¢ than 96% were unreliable, we estimated
= e ° o the time constants in two ways, one ex-
Q %] e o oo, 2 o ° o o o0 cluding thresholds >96% and another us-
8o g o0, 1 . oo ¢ ing all the data. Time constants for lapse
o ®0 0% oo, ° . o % e ¢ rate were smaller than those for psycho-
0% 7 20 2 o % 1’0 2 % 20 physical threshold, suggesting that task
Session learning occurred faster than perceptual
learning (Table 1). We further deter-
= B mined a nonparametric time constant
8 30, e 300 (see Materials and Methods, above). The
R nonparametric time constants were smaller
) for lapse rates compared with thresholds
QL 20 o (Table 1), further confirming that task
g . . . learn%ng occurred faster thar'l perceptual
; ol o % . ol o o oy 0 teete learn.lng. Overall, the median psycho-
> . W e o, .'. '0. . o, e physical threshold calculated from the last
S e . . . 10 sessions was 25.9% for monkey G and
= 0 _ i i . 0le® . . i , 43.8% for monkey P. Although the
S 0 10 2 0 Se‘“;sior;) 10 0 % 4 thresholds for monkey P were higher than
n expected, the thresholds for monkey G
C were in line with those reported from a
20 2 000 previous study using two well trained
> monkeys [median psychophysical thresh-
= old = 20.9% and 29.2% (Uka and DeAn-
= = gelis, 2003)].
S 34 ° "o, It is important to determine whether
2 = o ° ° R oo® . K the observed decrease in thresholds was
@ ek o ¢ % . L ° o due to improverpents .in eliminating un-
o ey e e ¢ °.,..°' . o Cwdtes ., necessary behayloral l?ljas.es or to genuine
o¢ - g o y 1?0 5 % o improvements in sensitivity. We therefore
Session analyzed how biases affected learning.

Figure 6.

Improvement of psychophysical sensitivity due to learning

We first examined how behavioral sensitivity changed due to
learning. For this purpose, we calculated error rates at 96% cor-
relation, the highest correlation that was used (Fig. 2B). These
values can represent lapse rate and may provide a measure of how
well the monkeys understood the task (Law and Gold, 2008). The
monkeys’ lapse rates decreased quickly, suggesting that task learning
occurred quickly. We then exploited psychometric functions
and fit them with a Weibull function to calculate psychophys-
ical thresholds as the binocular correlation level necessary to
achieve 82% correct performance. To determine how behav-
ioral performance improved due to training, we examined
how psychophysical thresholds changed across daily recording
sessions. Figure 2B shows changes in psychophysical thresholds
for the two monkeys. Because the largest binocular correlation
used was always 96%, thresholds >96% were unreliable. There-
fore, thresholds >96% are plotted as 200% in the figures. In
general, psychophysical thresholds decreased as recording ses-
sions progressed, reaching a plateau during the latter half of the
recording sessions. We quantified the long-term improvement

Bias analysis for the transfer experiment. 4, The amount of bias is plotted as a function of recording sessions sepa-
rately for the two monkeys during learning at new locations. Biases larger than 5 are plotted as 5. B, Sensitivities are plotted as a
function of recording sessions separately for the two monkeys during learning at new locations. Sensitivities larger than 30 are
plotted as 30. €, The relative contributions of biases compared with sensory signals are plotted as a function of recording sessions
separately for the two monkeys during learning at new locations. Values larger than 2 are plotted as 2.

For each session, we first estimated the
amount of bias by calculating sequential
biases (i.e., biases based on previous
choices and reward), and then imple-
mented them in the psychometric func-
tion (see Materials and Methods, above)
(Gold et al., 2008). This allowed us to cal-
culate sensitivity taking out the possible influence of bias. The
estimated amount of bias decreased with session for both mon-
keys (Spearman’s r = —0.26, p = 0.028, n = 70 for monkey G, r =
—0.29, p = 0.0038, n = 98 for monkey P; Fig. 3A). Sensitivity to
depth increased with session for both monkeys (Spearman’s r =
0.44, p = 0.0002, n = 70 for monkey G, r = 0.59, p < 0.0001, n =
98 for monkey P; Fig. 3B), and consequently, the relative contri-
bution of biases compared with the dependence on sensory sig-
nals decreased with session (Fig. 3C). Importantly, sensitivity was
calculated taking out the effects of biases. Even in this case, the
decrease in bias occurred earlier than the increase in sensitiv-
ity. This implies that task learning occurred quickly, and that
the observed decrease in psychophysical thresholds was most
likely due, at least in part, to genuine improvements in behav-
ioral sensitivity.

No change in neuronal sensitivity due to learning

To determine whether the long-term improvements in psycho-
physical sensitivity observed in our monkeys were accompanied
by improvements in neuronal sensitivity in area MT, we recorded
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from isolated MT neurons while the mon- A
keys learned the depth-discrimination
task. Each day, a neuron was isolated and
its receptive field and tuning properties
were mapped quantitatively. Discrimina-
tion trials then commenced with the stim-
ulus properties tailored to the tuning
properties of the neuron.

We first calculated neuronal thresh-
olds using ROC analysis (Britten et al,,
1992; Uka and DeAngelis, 2003). Not sur-
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prisingly, neuronal thresholds were small;
thus, neurons were sensitive to binocular
correlation, even at the beginning of B
training (Fig. 4A; thresholds >96% are
shown as 200%). For both monkeys, neu-
ronal thresholds were <30% for the first
three sessions, and no correlation was ob-
served between neuronal threshold and
recording session (Spearman’s r = 0.068,
p =0.57,n =70 for monkey G; r = 0.038,
p = 0.71, n = 98 for monkey P). Overall,
median neuronal thresholds were 23.2% .
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and 25.0% for monkeys G and P, respec-
tively, which is in line with thresholds pre-
viously reported using two well trained
monkeys [median neuronal threshold =
21.3% and 23.9% (Uka and DeAngelis,
2003)].

At the beginning of training, psycho-
physical thresholds were almost always larger than neuronal
thresholds. Thus, neuronal to psychophysical threshold ratios
(NP ratios) were almost always less than one at the beginning of
training (Fig. 4 B). The NP ratio then started to rise with training;
psychophysical thresholds decreased toward neuronal thresh-
olds, bringing the NP ratio close to 1. Here, NP ratios were plot-
ted for sessions where both psychophysical and neuronal
thresholds were smaller than 96%. Thus, NP ratios were not
shown early during training, but they obviously would have been
much lower than 1 if psychophysical thresholds were measurable.
Overall, long-term improvements in psychophysical sensitivity
were not accompanied by improvements in neuronal sensitivity
in area MT. Rather, processing beyond MT might change so that
information within sensitive MT neurons that existed from the
beginning of training is effectively read out for decisions about
depth.

Figure 7.

Long-term rise of choice-related response modulation due
to learning
If processing beyond MT is altered due to training, we might be
able to observe a signature of this change by inspecting the rela-
tionship between M T responses and the decision that the monkey
made. We thus measured the degree of choice-related response
modulation by calculating CP. CP refers to the probability that
one could predict the monkey’s choice from the responses of
sensory neurons (Britten et al., 1996; Uka and DeAngelis, 2004).
CP is known to be >0.5 during the depth-discrimination task for
MT neurons in well trained monkeys (Uka and DeAngelis, 2004).
We therefore expected CP to increase during depth-discri-
mination task learning.

Figure 4C shows CP data from the two monkeys. CP indeed
increased with training for both monkeys. CP first hovered
around 0.5 and then increased as recording sessions progressed,

20 30 40 O 10 20 30 40
. Session

Neuronal thresholds and CP do not change during the transfer experiment. A, Neuronal thresholds are plotted as a
function of recording sessions. Thresholds larger than 96% are plotted as 200%. Dotted line indicates 96%. B, Choice probabilities
are plotted as a function of recording sessions. Dotted line indicates 0.5.

although the degree of increase differed markedly between the
two monkeys. For monkey G, CP was high after ~15 sessions
and reached a plateau of ~0.68 (median of the last 20 sessions)
after 30 sessions. CP was even >0.9 for some neurons. For
monkey P, CP only increased slightly after >50 sessions, and
the plateau was ~0.57. Although we do not know why the
magnitude of CP differed between monkeys, the correlation
between CP and recording session was significant for both
monkeys (Spearman’s r = 0.30, p = 0.013, n = 70 for monkey
G;r=0.33,p = 0.0011 n = 98 for monkey P).

An important point is whether the rise in CP is due to task
learning or perceptual learning. To address this question, we
asked whether CP is correlated with lapse rate or psychophysical
thresholds. Because lapse rate and psychophysical thresholds are
correlated with each other, we calculated the partial correlation
between CP and both measures. Additionally, because CP is
known to be correlated with neuronal thresholds (Britten et al.,
1996; Uka and DeAngelis, 2004), we added neuronal thresholds
as a factor as well. Partial correlations were calculated, including
thresholds larger than 96%. Significant negative partial correla-
tions were observed between lapse rate and CP (r = —0.39, p <
0.001, n = 70 for monkey G; r = —0.20, p = 0.047, n = 98 for
monkey P), but not between psychophysical threshold and CP for
both monkeys (r = 0.20, p = 0.094, n = 70 for monkey G; r =
—0.01, p = 0.87, n = 98 for monkey P). This was true even if the
correlation analyses after calculation of residuals were nonpara-
metric (residuals lapse rate vs residual CP; Spearman’s r = —0.26,
p =0.032,n =70 for monkey G; r = —0.22, p = 0.032, n = 98 for
monkey P: residual threshold vs residual CP; Spearman’s r =
0.15, p = 0.22, n = 70 for monkey G; r = 0.16, p = 0.12,n = 98
for monkey P). Thus, the overall increase in CP seems to be
restricted to early phases of learning.
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exponential fits confirmed that task learn-
ing occurred faster than perceptual learn-
ing in both monkeys (Table 1).

After training at the fixed location, we
recorded from MT neurons. Figure 5A
(red circles) shows the receptive field lo-
cation of the recorded neurons relative to
the fixed training location in the opposite
hemifield. Receptive fields did not overlap
with the trained location. We next evalu-
ated whether behavioral learning of the

50 60 70 0 10 20 30

depth-discrimination task at the fixed lo-
cation transferred across visual fields. Red
triangles and circles in Figure 5C show
lapse rate and psychophysical thresholds,
respectively, while neurons were being re-
corded simultaneously. Both lapse rate
and psychophysical thresholds slightly de-
creased as recording sessions progressed.
In addition, learning was faster in the
transfer hemifield compared with initial
training, as was confirmed by the time
constant of exponential fits (Table 1).
This shows that although learning was
specific to the trained hemifield, general-
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Figure 8.  Relationship between CP and neuronal threshold/disparity-tuning symmetry. A, CP data were divided into three

groups depending on neuronal threshold for monkey G. CP is plotted against recording sessions separately for the three groups. B,
(P data were divided into three groups depending on disparity-tuning symmetry for monkey G. CP is plotted against recording
sessions separately for the three groups. Neurons with high thresholds were excluded. , Partial correlation between (P and
neuronal thresholds (filled circles) or CP and disparity-tuning symmetry (open circles) are plotted against recording sessions. Data
were grouped into 20-session windows, and partial correlations were calculated within each window. Session corresponds to the

beginning of the 20-session window.

Transfer across visual field

A signature of perceptual learning is that, in many cases, learn-
ing does not transfer across stimulus parameters, particularly
across visual field (Schoups et al., 1995). Recent studies, how-
ever, have shown considerable transfer of learning across stim-
ulus parameters (Jeter et al., 2010; Zhang et al., 2010). Because
the outcome of transfer experiments has led to different views
concerning the neuronal mechanism underlying perceptual
learning, we thought it important to measure both psychophys-
ical and neuronal transfer in our experimental setup. To explic-
itly test how behavioral sensitivity, as well as CP magnitude,
transferred across visual fields, we trained two more monkeys on
the depth-discrimination task at a fixed location (Fig. 5A, black
circle) before recording from M T neurons in the ipsilateral hemi-
sphere (i.e., receptive fields were in the opposite hemifield). As we
wanted the monkeys to generalize their learning across different
stimulus parameters but not across different spatial locations, for
each training session, groups of motion direction, speed, and
binocular disparities were randomly chosen from parameters
used in recording sessions from the previous two monkeys. Fig-
ure 5B shows that both lapse rate and psychophysical thresholds
decreased with training at the fixed location, although it took
longer for monkey M to reach a plateau in psychophysical per-
formance compared with other monkeys. A total of 192 training
sessions, consisting of 107,520 total trials, and 100 training
sessions, consisting of 56,000 total trials, were performed for
monkey M and monkey K, respectively. Time constants from

ization of learning that enabled fast learn-
ing in the untrained hemifield occurred
across visual fields.

Because stimulus parameters were al-
ways tailored to the neuron’s preference, pa-
rameters such as location, motion direction,
speed, and binocular disparity were differ-
ent for each recording session. This could
have induced variability in psychophysical
performance (Uka and DeAngelis, 2003) and
hampered our behavioral-improvement mea-
surement. Therefore, on the day following each recording session, the
monkeys performed the depth-discrimination task at the previously
trained location (Fig. 5A, black circle) using identical parameters ex-
cept spatial location and aperture size. Psychophysical thresholds
from those sessions are shown as black circles in Figure 5C. The
threshold ratio (untrained/trained location) shown in Figure 5D was
then used as a measure of improvement in behavior in the non-
trained hemifield. The threshold ratio gradually decreased, and a
negative correlation between threshold ratio and recording session
(Spearman’sr = —0.57, p <0.001, n = 35 for monkey M; r = —0.32,
p = 0.068, n = 35 for monkey K) indicated that the monkeys’ per-
formance improved with training. This confirms that learning did
indeed occur in the untrained hemifield.

We also recalculated the psychometric function taking bias into
account (Fig. 6). During recording, bias did not decrease (Spear-
man’sr = 0.15, p = 0.40, n = 35 for monkey M; r = —0.13, p = 0.45,
n = 35 for monkey K; Fig. 6 A), but rather stayed stable. Additionally,
sensitivity (taking out the effect of bias) slightly increased (Spear-
man’sr = 0.37, p = 0.029, n = 35 for monkey M; r = 0.23, p = 0.18,
n = 35 for monkey K; Fig. 6 B). Thus, the ability to attenuate biases,
presumably reflecting the knowledge that discrimination should be
based on sensory signals and not on the temporal structure of choice
and reward (task learning), transferred across visual field. Modest
learning also occurred at the untrained location.

Given the specificity and generalization of learning across visual
fields, we analyzed how neuronal characteristics transferred across
visual fields. Figure 7A shows neuronal thresholds across recording
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sessions. As was expected from the initial ex-
periments described above, neurons with
low thresholds were observed in the early
phase of recording sessions, and no correla-
tion between neuronal thresholds and re-
cording sessions was found (Spearman’s r =
—0.10, p = 0.55, n = 35 for monkey M; r =
—0.19, p = 0.27, n = 35 for monkey K). A
more interesting question is how CP be-
haved during the course of the recording
session. Interestingly, CP did not increase
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during the course of the recording session,
but had a rather high value from the begin-
ning (Fig. 7B). CP was over 0.6 for seven and
four of the first 10 recording sessions for
monkey M and monkey K, respectively,
and no correlation between CP and re-
cording session was observed (Spear-
man’s r = —0.061, p = 0.73, n = 35 for
monkey M; r = —0.10, p = 0.57, n = 35
for monkey K). The median CP was 0.61
and 0.54 across all recording sessions for
monkey M and monkey K, respectively,
which was significantly greater than 0.5
(sign test, p = 0.006, n = 35 for monkey M; p = 0.009, n = 35 for
monkey K). Thus, even though residual learning occurred in the
newly trained visual field, this was not accompanied by an in-
crease in CP.

Overall, our transfer experiment showed both specificity and
generalization of learning across visual fields. Psychophysical
performance in the untrained location was initially worse than
that in the trained hemifield, but learning was faster compared
with initial training. Additionally, we found no changes in neu-
ronal characteristics. This suggests that changes in the relation-
ship between MT responses and behavioral choices are restricted
to initial task learning.

Psychophysical Thresholds (%)

Figure 9.

Increase in choice-related response modulation depends on
neuronal sensitivity and disparity-tuning symmetry

CP is known to correlate with neuronal sensitivity and disparity-
tuning symmetry; neurons with smaller thresholds and those that
have peaks and troughs on opposite sides of zero disparity (i.e.,
asymmetric disparity tuning) tend to have a larger CP (Uka and
DeAngelis, 2004). Here, we analyzed how this relationship devel-
oped over the time course of learning.

Figure 8A shows CP data for neurons divided into three
groups depending on neuronal threshold for monkey G. For low-
threshold neurons, CP rose quickly and little thereafter; CP for
neurons with intermediate thresholds rose as well. CP for high-
threshold neurons was never large. Figure 8 B shows CP data
divided into three groups depending on tuning symmetry for
monkey G. In this figure, high-threshold neurons were excluded
because they never showed high CP. Tuning symmetry was cal-
culated by fitting a Gabor function (with the center of the Gauss-
ian fixed at zero) to the disparity-tuning curve and extracting the
phase parameter (Uka and DeAngelis, 2004). Interestingly, CP
for both symmetric and asymmetric neurons rose early during
training, but CP for symmetric neurons dropped late in training.

To quantify these impressions, we calculated how the correla-
tion between CP and neuronal threshold/tuning symmetry
developed across training sessions. Data were grouped into 20-
session windows, and the window slid every session, while partial
correlations between CP and neuronal thresholds or CP and tun-

Session

Human psychophysical performance. 4, Long-term improvement in psychophysical performance. Lapse rate (trian-
gles) and psychophysical thresholds (circles) are plotted as a function of daily sessions for a human subject. B, Long-term learning
atnew locations after learning in the opposite visual field. Red triangles and circles show lapse rate and psychophysical thresholds,
respectively, at new locations. Black triangles and circles correspond to lapse rate and psychophysical thresholds, respectively, at
the trained location, using the same stimulus parameters other than location and aperture size. All parameters were identical to
those used for monkey M. Solid lines denote exponential fits excluding thresholds >96%. Thresholds larger than 96% are plotted
as 200%. Dotted line indicates 96%.

ing symmetry were calculated within each window. The running
partial correlations are plotted in Figure 8C. Solid lines denote the
partial correlation between CP and neuronal thresholds. A nega-
tive correlation indicates that neurons with smaller thresholds
(i.e., the more sensitive neurons) had a larger CP. For monkey G,
a negative correlation was apparent from the beginning,
strengthened for the first 20 sessions, and reached a plateau there-
after. For monkey P, the negative correlation was apparent only
after 50 sessions. Broken lines denote the partial correlation be-
tween CP and tuning symmetry. A positive correlation indicates
that neurons with asymmetric tuning (i.e., neurons with a peak
and trough at opposite sides of zero) had a larger CP. For monkey
G, a positive correlation gradually developed after 30 sessions and
reached a plateau thereafter. For monkey P, the positive correla-
tion gradually developed after 70 sessions. Thus, a negative cor-
relation between CP and neuronal thresholds and a positive
correlation between CP and tuning symmetry were observed in
both monkeys. It also seems that the correlation between CP and
neuronal thresholds developed earlier than the correlation be-
tween CP and tuning symmetry, suggesting that the monkeys first
learned to read out signals from the more sensitive neurons and
later learned to fine tune their strategy to read out signals from
asymmetrically tuned neurons.

Comparison with human learning

In theory, it is difficult to dissociate task learning with perceptual
learning. For descriptive purposes, we associated changes in lapse
rate with task learning and changes in psychophysical thresholds
with perceptual learning. We further incorporated biases into the
psychometric function. Decrease in bias may be associated with
task learning, and increase in sensitivity with genuine perceptual
learning (see Discussion, below). Although these are convenient
ways to separate the two, it is not clear whether results obtained in
the present study are comparable to those described in the human
psychophysical literature. To address this question, we con-
ducted the same psychophysical experiments in two male human
subjects and compared them with the monkeys’ results. The sub-
jects were given explicit instruction to discriminate near versus
far. One of the subjects did not learn: psychophysical thresholds
were fairly low from the beginning and did not improve with
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training sessions. The other subject had a learning curve that was
very similar to that of the monkey. Data for this subject is shown
in Figure 9. Learning rates calculated from the exponential fits are
shown in Table 1, although the time constant for psychophysical
thresholds excluding thresholds larger than 96% in the untrained
hemifield is misleading because the subject’s threshold was
>96% on the second day, and thus not included in the exponen-
tial fit. Nonetheless, although there seems to be considerable in-
dividual difference, both in humans and monkeys, learning rates
overlap with each other. Moreover, learning was faster at the
untrained location. We further incorporated biases into the psy-
chometric function. Bias did not decrease with session either dur-
ing initial learning or in the untrained location in the transfer
experiment (Spearman’s r = —0.038, p = 0.79, n = 50 for initial
learning; r = 0.045, p = 0.83, n = 25 for untrained location:
transfer experiment). Sensitivity changes were observed during
initial training and modestly at the untrained location in the
transfer experiment (Spearman’s r = 0.75, p < 0.0001, n = 50 for
initial learning; r = 0.10, p = 0.63, n = 25 for untrained location:
transfer experiment). This suggests that long-term changes in the
structure of biases were different between monkeys and humans
during initial learning, presumably due to explicit instructions
given to the human. The occurrence of fast and modest learning
at the transfer location was comparable between monkeys and
humans.

Discussion

In this study, we first recorded from isolated neurons in area MT
while monkeys learned to perform a depth-discrimination task.
Long-term improvement in behavioral performance was accom-
panied by an increase in the correlation between MT responses
and behavioral choice (CP), although neuronal sensitivity did not
change due to learning. The increase in CP was correlated with
improvements in lapse rate. Our interpretation is that long-term
plastic changes occur beyond the processing in M T, such that the
readout of information from MT improves due to task learning.
We further explicitly tested whether behavioral learning and
changes in neuronal properties transferred across visual fields.
We found that although behavioral performance in the untrained
hemifield was initially worse than that in the trained hemifield,
learning was faster compared with initial training. Furthermore,
CP was high from the beginning of training in the untrained
visual field. We propose that the basic functional connections
between MT neurons and those mediating eye movements
change in both hemispheres during initial task learning, enabling
fast learning in the untrained hemifield. Changes underlying
learning in the untrained hemifield presumably are mediated by
mechanisms that are not detected by the magnitude of CP, al-
though structural changes in CP, such as correlations between CP
and disparity tuning symmetry, can occur without an increase in
the mean magnitude of CP.

Task learning and perceptual learning

What exactly is learned during learning of a perceptual task? We
hypothesized that monkeys initially tried to figure out the tem-
poral structure of choice and reward, which led to specific se-
quential biases. Sequential biases decreased during initial
learning, suggesting that the monkeys initially adopted a strategy
to search for temporal structure of choice and reward but later
concentrated on the relationship between sensory signal and
choice. In the transfer experiment, biases did not decrease with
session, implying that the monkeys knew they were to rely on
sensory signals: i.e., task learning transferred across visual field.
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Even in this case, sensitivity to depth increased, albeit modestly,
with session, suggesting that learning unrelated to task rule learn-
ing occurred. In one human subject whose learning curve was
similar to the monkeys, biases did not decrease with session dur-
ing initial learning. This is understandable because, based on the
explicit instructions, the subject knew he had to rely on sensory
signals and not on the temporal structure of choice and reward.
Fast learning at the untrained location also occurred in the hu-
man subject during the transfer experiment. Together, we believe
that task learning in monkeys was reflected in the decrease in bias
across sessions during initial learning. Improvements of sensitiv-
ity with constant biases presumably correspond to genuine per-
ceptual learning, which was observed in both human and
monkey. Fast learning at an untrained location may, in part, be
due to stable biases during the transfer experiment for monkeys,
but the occurrence in human suggests the functioning of alterna-
tive mechanisms.

Implication for long-term learning

Perceptual learning is often visual-field-specific, which has led to the
view that learning occurs in early visual areas that contain neurons
with small receptive fields (Karni and Sagi, 1991). Indeed, several
investigators have found an increase in the sensitivity of sensory
neurons in both areas V1 (Schoups et al., 2001) and V4 (Yang and
Maunsell, 2004; Raiguel et al., 2006) of the macaque monkey. How-
ever, the change in sensitivity is very small, and conflicting reports
have been made as well. Ghose et al. (2002) used a similar
orientation-discrimination task as Schoups et al. (2001), but found
no increase in the sensitivity of V1 neurons. Thus, an increase in the
sensitivity of sensory neurons is unlikely to explain the magnitude of
learning observed behaviorally.

Recently, Law and Gold (2008) recorded from neurons in
areas MT and LIP during long-term learning of a motion-
direction discrimination task. They showed that although sensi-
tivity of MT neurons to motion direction did not change with
training, the rate of build-up activity in LIP increased. They also
showed that the relationship between neuronal sensitivity and CP
became stronger with learning. Law and Gold (2008) interpreted
their results as evidence that the readout of MT signals changes
during training.

Our results from the two monkeys recorded from initial train-
ing are basically in line with Law and Gold (2008), complement-
ing them using a similar but different task. It is clear that sensitive
neurons exist from the beginning of training. Moreover, CP in-
creased during initial learning. The increase in CP, however, was
restricted to early phases of training when monkeys were learning
the task. Our transfer experiment further showed that CP was
large from the beginning of training in the untrained hemifield.
This indicates that a large CP can be observed without previous
training of the task at that particular location.

There are at least two interpretations for these results. First,
CP could reflect changes in noise correlation (Shadlen et al., 1996;
Nienborg and Cumming, 2010). Indeed, recent studies have
found that the structure of noise correlation is not fixed, but is
dynamic (Cohen and Newsome, 2008; Cohen and Maunsell,
2009; Mitchell et al., 2009). In this case, the transfer experiment
implies that noise correlation structure changes in both hemi-
spheres simultaneously during initial training, so that noise is
more correlated within each MT after learning. An increase in
noise correlation predicts, however, that the pooled MT response
becomes less sensitive, which contradicts the improved behav-
ioral sensitivity. Second, a large CP may be an indication that a
neuron is more dedicated to the decision process (Uka and
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DeAngelis, 2004; Law and Gold, 2008). Indeed, Gu et al. (2011)
showed that variations in CP were not explained by the structure
of noise correlation among nearby neurons, giving support for
this theory. In this case, readout from MT neurons should change
in both hemispheres simultaneously during initial training. It is
also possible that the structure underlying MT and the decision
process does not change during learning, but the relative contri-
bution of MT to decision increases due to reduction in biases.

Our transfer experiment further showed that learning in the
untrained hemifield was faster than initial learning. We propose
that initial task learning shaped circuitry downstream from MT
in both hemispheres, enabling fast learning in the untrained
hemifield. This is consistent with recent psychophysical studies
showing that task learning followed by exposure to visual stimu-
lus enables transfer of perceptual learning (Zhang et al., 2010).
Generalization of learning of this type is difficult to explain in a
strict reinforcement learning framework (Sutton and Barto,
1998; Law and Gold, 2009) or with the Hebbian rule (Hebb,
1949) because MT neurons in the untrained hemifield were not
activated. Hence, studies aimed to understand the mechanism
underlying generalization and additional learning in the un-
trained visual field merits future investigation.
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